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Актуальность. Перспективным направлением селекции твердой пшеницы Triticum durum  Desf. является создание скороспелых, не 
чувствительных к длине дня сортов. Источником генов важных для селекции признаков может служить коллекция генетических ресурсов 
пшеницы ВИР, потенциал которой по адаптивно ценным признакам мало изучен, а аллельное разнообразие по локусам генов скорости 
развития неизвестно. Скрининг коллекции с помощью аллель-специфичных молекулярных маркеров генов отзывчивости на яровизацию 
(Vrn) и чувствительности к фотопериоду (Ppd) актуален. Материал и методы. Выборка для генотипирования по локусам высокой скорости 
развития растений включала 48 образцов T.  durum, охарактеризованных нами ранее по физиологическим свойствам и компонентам 
продуктивности. В молекулярном скрининге использовали восемь опубликованных в литературных источниках аллель-специфичных ПЦР-
маркеров. В вегетационном опыте в условиях естественного и короткого 12-часового дня определяли коэффициент фотопериодической 
чувствительности. Результаты. С помощью диагностических маркеров у 24 образцов выявлены доминантные аллели Vrn, ассоциированные 
с яровым типом развития: 23 образца являются носителями аллеля Vrn-A1, определяющего яровой тип развития; у 24 образцов выявлен 
доминантный аллель Vrn-B1, тогда как аллель Vrn-B3a обнаружен лишь у образца Ambo  7. У 21 образца выявлены доминантные аллели 
Ppd-A1 и Ppd-B1 генов, определяющих нечувствительность к фотопериоду. В вегетационном опыте по валидации генотипов образцов 
с  идентифицированными генами скороспелости и фотопериодической чувствительности подтверждена слабая реакция на длину дня 
восьми мексиканских линий с маркерами доминантных аллелей генов Vrn и Ppd. Заключение. По результатам фенотипического анализа 
и молекулярного генотипирования выделены 24 источника генов скороспелости твердой пшеницы.
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Введение

Пшеница твердая (Triticum durum Desf.) является есте-
ственным аллотетраплоидом (2n=28) геномного состава 
BBAUAU. Зерно твердой пшеницы используется в основ-
ном для питания человека. Она употребляется в виде 
изделий из цельных зерен или муки, из которой произво-
дят спагетти и макароны, плоский хлеб, крупы, кускус, 
булгур, квасной хлеб, лапшу и другие продукты, которые 
считаются диетическими продуктами благодаря биохими-
ческому составу зерна.

Селекция твердой пшеницы на современном этапе 
направлена на улучшение таких признаков, как скороспе-
лость, устойчивость к полеганию, устойчивость к болез-
ням и вредителям, засухоустойчивость. Одной из важней-
ших задач селекции твердой пшеницы является качество 
макаронных изделий, которое сильно зависит от коли-
чества и качества клейковины (глютена) в составе белка 
зерна.

В последние десятилетия в селекционных центрах 
наряду с классическими методами селекции использу-
ют молекулярные подходы, основанные на применении 
методов молекулярных маркеров  – маркер-ориентиро-
ванная селекция (МОС). Молекулярные маркеры разде-
ляют на три группы согласно основному методу анализа: 
маркеры, исследуемые с помощью блот-гибридизации, 
ПЦР и ДНК-чипов. Широко применяются ПЦР-марке-
ры, основанные на использовании доступного, надежно-
го и недорогого метода полимеразной цепной реакции 
(ПЦР). С  ПЦР-маркеров началось широкое внедрение 
ДНК-маркеров в селекционный процесс. Отбор по гено-
типу с помощью ПЦР-маркеров имеет ряд преимуществ 
по сравнению с отбором по фенотипу (Khlestkina, 2013).

В литературе описан ряд маркеров для выявления 
генов, определяющих ценные биологические и хозяй-
ственные признаки у пшеницы. В частности, для иден-
тификации генов, связанных с таким признаком как ско-
роспелость, разработаны и используются в маркер-ори-
ентированной селекции аллель-специфичные маркеры 
генов Vrn, определяющих тип развития – яровой-озимый 
(Stelmakh, 1998; Muterko et al., 2016), и Ppd, контролирую-
щих реакцию на фотопериод (Beales et al., 2007).

Продолжительность вегетационного периода расте-
ний является важным биологически адаптивным и хозяй-
ственно ценным свойством в селекции пшеницы. С ним 
связано большинство признаков и свойств сорта и, в ито-
ге, его урожайность и качество зерна. Период включает 
несколько фаз вегетации растений, основными из кото-
рых для пшеницы принято считать всходы, цветение, 
колошение и созревание. Фазу колошения можно счи-
тать надежным критерием определения группы спелости, 
поскольку межфазный период «всходы-колошение» явля-
ется менее вариабельным в сравнении с периодом «всхо-
ды-созревание».

Время начала колошения находится под контро-
лем трех генетических систем, детерминирующих реак-

цию растений на яровизирующие температуры (гены 
Vrn  – vernalization), чувствительность к фотопериоду 
(гены Ppd  – photoperiod response) и гены скороспелости 
как таковые, контролирующие время цветения и незави-
сящие от факторов внешней среды (Eps-earliness per  se) 
(Worland, 1996; Lewis et  al., 2008; Ochagavía et  al., 2019). 
Большинство исследователей считают, что главную роль 
играют две первые системы, а третья имеет лишь второ-
степенное значение. Потребность в яровизации и ее про-
должительность является важной характеристикой, влияю
щей на адаптивность растений и определяющей деление 
пшеницы на яровую и озимую.

Три основных гена Vrn1, Vrn2 и Vrn3 контролиру-
ют реакцию на яровизацию пшеницы (Yan et  al. 2003; 
Trevaskis et  al., 2007; Distelfeld et  al., 2009 a; b; Shimada 
et  al. 2009; Distelfeld, Dubcovsky 2010; Diaz et  al., 2012). 
Современное обозначение этих генов  – Vrn-A1 (Vrn1), 
Vrn-B1 (Vrn2) и Vrn-D1 (Vrn3). Система этих генов фор-
мирует единый механизм, который контролирует процесс 
яровизации и определяет сроки колошения пшеницы.

Потребность в яровизации у мягкой пшеницы контро-
лируется аллелями трех основных гомеологичных генов 
Vrn1 – Vrn-A1, Vrn-B1 и Vrn-D1, которые локализованы на 
хромосомах 5А, 5В, 5D соответственно (Yan et al., 2003). 
Доминантный Vrn-A1 является самым сильным ингиби-
тором потребности растений в яровизации и обеспечива-
ет полную нечувствительность к яровизирующим темпе-
ратурам, кроме того, он является эпистатичным по отно-
шению к генам Vrn-B1 и Vrn-D1. Наличие хотя бы одного 
доминантного аллеля гена Vrn1 приводит к яровому типу 
развития. Озимый тип развития контролируется рецес-
сивными аллелями всех трех генов Vrn1 – vrn-A1, vrn-B1 
и vrn-D1 (Pugsley, 1971; Turner et al., 2013).

У твердой пшеницы потребность в яровизации так-
же контролируется аллелями генов Vrn-1 (Yan et al., 2003; 
2006). Гомологичные копии гена Vrn-1 – Vrn-A1 и Vrn-B1 – 
картированы в средних районах длинного плеча хромо-
сом 5А и 5В соответственно (Yan et  al., 2003; Fu et  al., 
2005).

Гены Vrn1 пшеницы кодируют транскрипционный 
фактор семейства MADS-box, участвующий в переходе 
апикальной меристемы от вегетативной стадии к репро-
дуктивной. Они имеют не менее двух регуляторных райо-
нов, локализованных в промоторе и первом интроне соот-
ветственно (Yan et  al., 2004a; Fu et  al., 2005; Diaz et  al., 
2012).

У тетраплоидной и гексаплоидной пшеницы раз-
личия между доминантными и рецессивными аллеля-
ми Vrn-А1 определяются мутациями в области промото-
ра, а также наличием крупной делеции в первом интро-
не рецессивного аллеля vrn-А1 (Konopatskaia et  al., 2016; 
Muterko et  al., 2015; 2016). Описано несколько аллелей 
генов Vrn-A1 и Vrn-B1, различающихся структурой после-
довательностей, влиянием на потребность в яровизации 
и сроки цветения (Turner et  al., 2013). У тетраплоидных 
видов пшеницы выявлено до 10 различных аллельных 
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вариантов в локусе Vrn-A1, характеризующихся различ-
ными изменениями в последовательности гена. У алле-
ля Vrn-A1a дуплицирована промоторная область, а аллель 
Vrn-A1b характеризуется делецией 20 пн в повторяющем-
ся элементе 5ʹ нетранслируемой области. Описаны раз-
личающиеся по структуре аллели Vrn-A1c, Vrn-A1d и Vrn-
A1e (Yan et al., 2004a; Fu et al., 2005). Доминантные алле-
ли Vrn-B1 характеризуются наличием крупных делеций 
в области интрона. Так, например, доминантный аллель 
Vrn-B1 изогенной линии Triple Dirk B мягкой пшеницы, 
характеризующейся яровым типом развития, отличает-
ся от рецессивного vrn-B1 озимой Triple Dirk с делеци-
ей 6850 пн в первом интроне (Fu et al., 2005). Разработа-
ны праймеры для различения аллелей Vrn-B1a, Vrn-B1b 
и  Vrn-B1c (Muterko et  al., 2016). Локус Vrn-B на хромо-
соме 5 содержит два тесно сцепленных гена, которые 
кодируют белки с доменами цинкового пальца и ССТ, 
ZCCT1 и  ZCCT2, действующие как негативные регуля-
торы цветения (Yan et al., 2004b; Distelfeld et al., 2009a). 
Ген Vrn-B3 находится в коротком плече хромосомы 7 (Yan 
et al., 2006). Доминантный аллель Vrn-B3b отличается от 
рецессивного vrn-Bb инсерцией транспозона М882, отно-
сящегося к семейству неавтономных перемещающихся 
элементов hAT, в промоторную область (Muterko, Salina, 
2018).

Гены Рhotoperiod-1 (Ppd1) относятся к семейству генов 
Pseudo-Response Regulator (PRR)  – регуляторов суточ-
ных ритмов у Arabidopsis (Turner et al., 2005). Основные 
гены реакции на фотопериод позволяют растениям пше-
ницы воспринимать изменения продолжительности дня, 
при этом ускоренное колошение происходит при выра-
щивании на длинном дне, а короткий день вызывает его 
задержку, если только нет мутаций в генах Ppd1 (Beales 
et  al. 2007; Wilhelm et  al., 2009; Diaz et  al., 2012). Доми-
нантные аллели этих генов снижают чувствительность 
к фотопериоду. Пшеница является растением длинно-
го дня, но наличие доминантных аллелей генов Ррd обу-
словливает ее нечувствительность, фотонейтральность, 
к действию короткого дня, при которой ее вегетационный 
период не увеличивается.

По своей фотопериодической чувствительности 
(ФПЧ) культуры подразделяются на фотопериодически 
чувствительные, при этом растениям для перехода к цве-
тению требуется длинный световой день  – признак кон-
тролируется рецессивными аллелями Ppd-генов, и фото-
периодически нейтральные, нечувствительные  – пере-
ход к цветению происходит независимо от длины дня, 
для чего хотя бы один из Ppd-генов должен находиться 
в  доминантном состоянии (Dragovich et  al., 2021). Фото-
периодическая нечувствительность считается важным 
свойством современных высокоадаптивных сортов со 
стабильно высокой продуктивностью. Чувствительность 
пшеницы к продолжительности светового периода суток 
обусловлена преимущественно аллельным составом 
гомеологической серии генов Ppd1 (Shaw et al., 2012).

У мягкой пшеницы реакция на продолжительность 

периода освещенности контролируется тремя гомео-
логичными генами: Ppd-А1, Ppd-В1 и Ppd-D1, локали-
зованными на хромосомах 2A, 2B, 2D, соответственно 
(Worland et  al.,1998; Cockram et  al., 2007). Эти гены так-
же оказывают существенное влияние на сроки колоше-
ния. По силе влияния на чувствительность к фотопериоду 
гены Ppd1 располагаются в следующем порядке: Ppd-D1> 
Ppd-B1> Ppd-A1, хотя в отдельных случаях эффект аллеля 
Ppd-B1 сопоставим с Ppd-D1 (Worland et al., 1998; Langer 
et al., 2014). J. Beales c соавторами (Beales et al.,2007) раз-
работали диагностические маркеры для Ppd-D1  – основ-
ного локуса реакции мягкой пшеницы на фотопериод. 
Доминантный аллель этого гена Ppd-D1a обусловливает 
нейтральную реакцию на длину дня, в отличие от рецес-
сивного аллеля ppd-D1b.

У твердой пшеницы реакцию на фотопериод контро-
лируют гены Ppd-A1 и Ppd-B1, локализованные в корот-
ких плечах гомеологичных хромосом 2A и 2B соответ-
ственно (Laurie, 1997). В результате изучения 23 гено-
типов яровой твердой пшеницы в трех географических 
пунктах было показано, что наибольшее влияние на фор-
мирование массы 100 зёрен оказали аллели гена Ppd-A1, 
тогда как изменчивость числа зёрен в колосе в боль-
шей степени связана с аллельным разнообразием локуса 
Ppd-B1 (Arjona et al., 2018).

Скорость развития и реальная продолжительность 
вегетационного периода являются результатом сочета-
ния специфических генов Vrn и Ppd и их взаимодействия 
с факторами окружающей среды. Информация об аллель-
ной изменчивости этих генов и их влиянии на агроно-
мические характеристики имеет большую ценность для 
селекции пшеницы (Stelmakh, 1998). В специальных экс-
периментах выявлено уменьшение степени аллельного 
разнообразия генов Vrn и Ppd современных сортов твер-
дой пшеницы, адаптированных к условиям средиземно-
морского региона, по сравнению с местными испански-
ми сортами, и подтверждена определяющая роль мутаций 
в гене Vrn-A1 на формирование признаков, контролирую-
щих яровой тип развития (Royo et al., 2020).

Использование молекулярных маркеров значитель-
но повышает эффективность идентификации генетиче-
ского материала и дает понимание адаптивной ценно-
сти отдельных аллелей или их комбинаций в конкретных 
условиях выращивания пшеницы. Отбор с помощью мар-
керов экономически эффективен, поддается автоматиза-
ции, что обеспечивает его высокую производительность 
(Mohan et  al. 1997; Gupta et  al. 1999; Koebner, Summers, 
2002; Rana et al., 2009; Mammadov et al., 2012; Randhawa 
et al., 2013).

Цель настоящей работы  – с использованием моле-
кулярных маркеров выделить источники скороспело-
сти – образцы твердой пшеницы, содержащие эффектив-
ные гены высокой скорости развития растений (Vrn, Ppd). 
Для этого необходимо было последовательно решить сле-
дующие задачи: подобрать по литературным источникам 
и  протестировать праймеры, специфичные для локусов 
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Vrn и Ppd; провести молекулярно-генетический анализ 
с использованием ПЦР-маркеров генов Vrn и Ppd, локали-
зованных в геномах A и В; провести вегетационный опыт 
по валидации генотипов образцов с идентифицированны-
ми генами скороспелости и фотопериодической чувстви-
тельности.

Материалы и методы

Выборка для генотипирования по локусам высокой 
скорости развития растений (Vrn, Ppd) включала 48 ско-
роспелых образцов твердой пшеницы из коллекции ВИР 
(вегетационный период 90-101 дней), охарактеризованных 
нами ранее по физиологическим свойствам и компонен-
там продуктивности – это 41 линия из питомника оценки 
твердой пшеницы “26TH IDSN; 94-95”, CIMMYT (Мек-
сика) и семь изогенных линий, созданных в CIMMYT, 
поступивших из National Small Grains Collection (NSGC) 
США (Приложение/ Supplement1). В качестве контро-
лей было взято пять сортов твердой пшеницы с иденти-
фицированными ранее (Muterko et  a1., 2016) аллелями 
генов Vrn (Vrn-A1, Vrn-B1, Vrn-B2, Vrn-B3,) и Ppd (Ppd-A1b, 
Ppd-B1a, Ppd-B1b): ‘Харьковская 1’  – vrn-A1b.3 (к-45910, 
Украина), ‘GK  Basa’  – Vrn-A1i (к-58475, Венгрия), ‘Ели-
заветинская’  – Vrn-B3a (к-63772, РФ, Саратовская обл.), 
‘Башкирская  27’  – Vrn-А1а.1  (к-64486, РФ, Башкирия), 
‘Донская элегия’ – Vrn-B1c (к-64488, РФ, Ростовская обл.) 
и четыре скороспелые линии мягкой пшеницы Konini 
(к-59948, Новая Зеландия), Рифор 11 (к-67802, РФ, Ленин-

градская обл.), Рифор  12 (к-67803, РФ, Ленинградская 
обл.), Рифор 13 (к-67803, РФ, Ленинградская обл.) (Rigin 
et al., 2022).

Выделение геномной ДНК осуществляли по мето-
дике Д.Б.  Дорохова и Э.  Клоке (Dorokhov, Klocke, 1997) 
в модификации, разработанной в отделе генетики ВИР 
(Anisimova et al., 2018). Для этого зерновки проращивали 
на влажной фильтровальной бумаге в чашках Петри при 
естественном освещении. Суммарную ДНК выделяли из 
10 проростков 5-7-дневного возраста с использованием 
SDS-буфера. Качество полученных фракций ДНК прове-
ряли методом электрофореза в 1% агарозном геле и спек-
трофотометрически.

Молекулярно-генетический анализ проводили мето-
дом полимеразной цепной реакции (ПЦР) с использо-
ванием восьми пар праймеров, специфичных для алле-
лей генов Vrn-A1, Vrn-B1, Vrn-B3, Vrn-B2, Ppd-A1, Ppd-B1. 
Последовательности олигонуклеотидов, амплифицируе-
мый район гена и длина диагностического фрагмента ука-
заны в таблице 1. Состав ПЦР-смеси и условия амплифи-
кации были идентичны рекомендованным разработчи-
ками праймеров. ПЦР проводили на приборе MiniAmp 
Plus (Thermo Fisher Scientific, США). Продукты ампли-
фикации анализировали методом электрофореза в 1,5-
2% агарозном геле в однократном трис-боратном буфе-
ре и  визуализировали в ультрафиолетовом свете после 
окрашивания в растворе бромистого этидия. Использова-
ли маркеры молекулярного веса ДНК Step 100 и Step 100 
Long (Биолабмикс).

Таблица 1. Аллель-специфичные маркеры, использованные для 
генотипирования линий твердой пшеницы по локусам генов 

скороспелости и чувствительности к фотопериоду
Table 1. Allele-specific markers used for genotyping of durum wheat 

lines for early ripening and photoperiod sensitivity gene loci

Комбинация 
праймеров / Primer 

combination

Тестируемый 
аллель гена/ Tested 

allele of the gene
T (°C)

Размер фрагмента 
ПЦР, пн/ Amplicon 

size, bp
Источник/ Reference

VRN1AF/ 
VRN1- INT1R Vrn-A1а 58 713 Yan et a1., 2004a
Vrn-Al-intr F/ 
Vrn-Al-intr Rl vrn-A1 60 541 Muterko et a1., 2016
Ex1/C/F/ 
Intr1/B/R3

Vrn-B1a  
Vrn-B1с 58 1091 

705
Fu et al., 2005 
Muterko et al., 2016

V2B-D4F1/ 
V2B-D4R1 Vrn-B2 60 289 

286 Yan et a1., 2004b
FT-B-INS-F/ 
VRN4-B- NOINS-R Vrn-B3a 61 1765 Yan et a1., 2006
Ag5del_F2/ 
Ag5d el R2 Ppd-A1b 56 452 Wilhelm et a1., 2009
TaPpd-B1proF1/ 
TaPpd-B1intlR1 Ppd-B1 64 1292 Seki et a1., 2011
TaPpd-B1intlR1/ 
206bp_de1_25_R1 Ppd-B1 64 874 Takenaka, Kawahara, 2012

1 Приложение доступно в онлайн версии статьи/ The supplement is available in the online version of the paper: DOI: 10.30901/2658-6266-2025-2-o1
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Вегетационный опыт по валидации генотипов 
13 образцов с идентифицированными генами скороспело-
сти и фотопериодической чувствительности (табл. 2) про-
водили в 2023-2024 годах на экспериментальной площад-
ке отдела генетики ВИР в соответствии с разработанной 
в отделе методикой. Коэффициент фотопериодической 
чувствительности (Кфпч) определяли, как отношение 
продолжительности периода «всходы-колошение» у рас-
тений, выращенных соответственно в условиях длинно-
го естественного и короткого 12-часового дня (Koshkin, 
2012).

Результаты

С использованием молекулярных маркеров, специ-

фичных для аллелей генов Vrn и Ppd, проведен молеку-
лярный скрининг 48 образцов твердой пшеницы, ото-
бранных по признаку скороспелости, и определены их 
генотипы по анализируемым локусам.

С помощью комбинации праймеров VRN1AF/ VRN1-
INT1R у 23 образцов твердой пшеницы подтверждено 
наличие доминантного аллеля главного гена Vrn-A1a, кон-
тролирующего яровой тип развития (рис.  1). Исключе-
ние составил образец CIGM91.349-2, у которого не были 
получены продукты амплификации. При использовании 
комбинации праймеров VRN1AF/ VRN1-INT1R ни у одно-
го из 23 образцов не выявлен диагностический фрагмент 
длиной 541  пн, характерный для рецессивного аллеля 
vrn-A1.

Рис. 1. Идентификация доминантного аллеля Vrn-A1 с помощью праймеров  
VRN1AF/ VRN1-INT1R. Маркерные фрагменты имеют длину 713 пн. 

Номера дорожек соответствуют номерам образцов в таблице 3. 
М – маркер молекулярного веса ДНК Step100

Fig. 1. Identification of the dominant Vrn-A1 allele with primer combination  
VRN1AF/ VRN1-INT1R. Marker fragments are 713 bp long.  

Track numbers correspond to the accession numbers in Table 3.  
M – DNA molecular weight marker Step 100

Маркер доминантного аллеля Vrn-B1а (размер фраг-
мента 1091  пн), амплифицированный с праймера-
ми Ex1/C/F /Intr1/B/R3, обнаружен у четырёх образцов, 
а  у  трёх образцов выявлен маркер доминантного аллеля 
Vrn-B1с (размер амплифицированного фрагмента 705 пн). 
Вариант доминантного аллеля Vrn-B3a (диагностиче-
ский фрагмент длиной 1765 пн, амплифицируется с парой 
праймеров FT-B-INS-F/ VRN4-B- NOINS-R) выявлен 
у единственного образца  – Ambo  7 (к-68387). Маркеры 
доминантного аллеля Vrn-B2 (амплифицируются с парой 
праймеров V2B-D4F1/ V2B-D4R1) обнаружены у всех 24 
образцов.

У 21 образца выявлены варианты доминантных алле-
лей Ppd-A1 и Ppd-B1, которые определяют нечувстви-
тельность к фотопериоду (табл. 3). Так носителями доми-

нантного аллеля Ppd-A1 был 21 образец, а доминантного 
аллеля Ppd-B1 – 24 образца (рис. 3).

В вегетационном опыте по валидации генотипов 
образцов с идентифицированными генами скороспелости 
и фотопериодической чувствительности изучали реакцию 
на длину дня у 13 образцов, генотипы которых по локу-
сам Vrn и Ppd были установлены c помощью аллель-спец-
ифичных молекулярно-генетических маркеров.

В результате было установлено, что пять образцов  – 
Labud 15, Nyasa 2, Garcilla 2, Ting 7 и Plata 11 имеют сла-
бую реакцию на длину дня. Задержка колошения на 
коротком дне по сравнению с естественным днем у них 
составила до 8,2 суток, Кфпч до 1,20. Самым чувстви-
тельным оказался образец Stork, задержка колошения на 
коротком дне по сравнению с естественным ‒ до 43,8 сут., 
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Рис. 2. Идентификация доминантного аллеля Vrn-B2 с помощью праймеров  
V2B-D4F1+/ V2B- D4R1. Маркерный фрагмент имеет длину 289 пн. Номера дорожек соответствуют 

номерам образцов в таблице 3. M – маркер молекулярного веса ДНК Step 100 Long
Fig. 2. Identification of the dominant VRN - B2 allele with primer combination 

V2B-D4F1+/ V2B- D4R1. Marker fragments are 289 bp long. Track numbers correspond 
to the accession numbers in Table 3. M – DNA molecular weight marker Step 100 Long

Рис. 3. Идентификация доминантного аллеля Ppd-B1 с помощью праймеров  
TaPpd-B1proinFl/ 206bp de1 25 R1. Маркерный фрагмент имеет длину 874 пн. Номера дорожек 

соответствуют номерам образцов в таблице 3. M – маркер молекулярного веса ДНК Step 100 Long
Fig. 3. Identification of the dominant Ppd-B1 allele with primer combination  

TaPpd-B1proinFl/ 206bp de1 25 R1. Marker fragments are 874 bp long. Track numbers correspond 
to the accession numbers in Table 3. M – DNA molecular weight marker Step 100 Long

Рис. 4. Идентификация доминантного аллеля Ppd-B1 с помощью праймеров  
TaPpd-B1proF1/ TaPpd-B1int l R1. Маркерный фрагмент имеет длину 1292 пн. Номера дорожек 

соответствуют номерам образцов в таблице 3. M – маркер молекулярного веса ДНК Step 100 Long
Fig. 4. Identification of the dominant Ppd-B1 allele with primer combination  

TaPpd-B1proF1/ TaPpd-B1int l R1. Marker fragments are 1292 bp long. Track numbers correspond 
to the accession numbers in Table 3. M – DNA molecular weight marker Step 100 Long
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Кфпч ‒ 1,87 (см. табл. 2). У образца Stork выявлен рецес-
сивный аллель ppd-A1, тогда как у других, изученных по 
признаку фотопериодической чувствительности с помо-
щью молекулярных маркеров, идентифицирован доми-

нантный аллель Ppd-A1 (см. табл. 3).
По результатам фенотипического анализа и молеку-

лярного генотипирования выделены 24 источника генов 
скороспелости твердой пшеницы (см. табл. 3).

Таблица 2. Результаты вегетационного опыта по валидации генотипов мексиканских образцов 
с идентифицированными генами скороспелости и фотопериодической чувствительности

Table 2. Results of the vegetation experiment in validating the genotypes of Mexican 
accessions with identified genes for early ripening and photoperiodic sensitivity

№
Пп/ 
No.

Номер по 
каталогу 

ВИР, к-/ VIR 
catalogue No., 

k-

Название/ 
Name

Чувствительность к длине дня/ 
Day length sensitivity

Продолжительность периода всходы-
колошение, дни/ Duration of the 
germination-earing period, days Т2-Т1

Кфпч/ 
Photoperiodic 

sensitivity coefficient
Т1 Т2

1 68360 Labud 15 40,8±0,44 45,5±0,50 4,7 1,12
2 68355 Nyasa 2 45,3±0,45 52,8±1,96 7,5 1,17
3 68350 Garcilla 2 40,9±0,64 48,1±0,46 7,2 1,18
4 68361 Ting 7 49,3±2,10 58,5±1,80 9,2 1,19
5 68347 Plata 11 43,5±0,22 52,3±0,26 8,8 1,20
6 68351 Pele 1 46,5±0,22 56,9±0,18 10,4 1,22
7 68352 Ambo 1 40,5±0,96 50,9±0,26 10,4 1,26
8 68354 Theus 3 46,3±0,83 59,0±1,62 12,7 1,27
9 68348 Hai 12 39,7±0,33 51,9±3,84 12,2 1,31
10 68349 Lotail 10 39,7±0,73 52,9±0,12 13,2 1,33
11 68346 Porron 1 35,8±0,65 48,9±0,91 13,0 1,37
12 68409 Himan 9 35,8±0,65 48,9±0,91 13,0 1,37
13 68345 Stork 50,3±3,36 94,1±0,82 43,8 1,87

Таблица 3. Источники генов скороспелости и нечувствительности к фотопериоду, выявленные среди 
образцов твердой пшеницы мексиканского происхождения с помощью диагностических маркеров

Table 3. Sources of genes for earliness and photoperiod insensitivity identified 
using diagnostic markers in durum wheat accessions of Mexican origin

№/ 
No.

№ по каталогу ВИР, 
к-/ VIR catalogue 

No., k-

Название/ 
Accession name

Диагностические маркеры / Diagnostic markers

V
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F/
 V

R
N

1-
IN

T
1R

Pp
d-

A
1p

ro
F/

 
A

g5
de

l_
R

2

A
g5

de
l_

F2
/  

A
g5

de
l_

 R
2

E
x1

/C
/F

/ 
In

tr
1/

B
/R

3

E
x1

/C
/F

/ 
In

tr
1/

B
/R

4

Ta
Pp

d-
B

1p
ro

F1
/ 

Ta
Pp

d-
 B

lin
t l

 R
1,
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V
2B

- D
4R

1

1 68345 Stork Vrn-A1 - ppd-A1 - vrn-B1 Ppd-B1 Vrn-B2
2 68346 Porron 1 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
3 68347 Plata 11 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
4 68348 Hai 12 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
5 68349 Lotail 10 Vrn-A1 Ppd-A1 - Vrn-B1a - Ppd-B1 Vrn-B2
6 68350 Garcilla 2 Vrn-A1 Ppd-A1 - Vrn-B1a vrn-B1 Ppd-B1 Vrn-B2
7 68351 Pele 1 Vrn-A1 Ppd-A1 - Vrn-B1a - Ppd-B1 Vrn-B2
8 68352 Ambo 1 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
9 68354 Theus 3 Vrn-A1 Ppd-A1 - Vrn-B1a - Ppd-B1 Vrn-B2
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Таблица 3. (Продолжение)

№/ 
No.

№ по каталогу ВИР, 
к-/ VIR catalogue 

No., k-

Название/ 
Accession name

Диагностические маркеры / Diagnostic markers
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10 68365 Morito 2 Vrn-A1 Ppd-A1 - Vrn-B1c vrn-B1 Ppd-B1 Vrn-B2
11 68366 Podiceps 21 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
12 68370 Alcita 1 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
13 68372 Lapdy 24 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
14 68387 Ambo 7 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
15 68392 Nehama 4 Vrn-A1 Pp -A1 - - vrn-B1 Ppd-B1 Vrn-B2
16 68379 Cui-niao 1 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
17 68409 Himan 9 Vrn-A1 - ppd-A1 - vrn-B1 Ppd-B1 Vrn-B2
18 66278 CIGM91.349-1 Vrn-A1 - ppd-A1 - - Ppd-B1 Vrn-B2
19 66279 CIGM91.349-2 - Ppd-A1 - - - Ppd-B1 Vrn-B2
20 66281 CIGM91.349-6 Vrn-A1 Ppd-A1 - Vrn-B1c vrn-B1 Ppd-B1 Vrn-B2
21 66282 CIGM98.775-1 Vrn-A1 Ppd-A1 - - vrn-B1 Ppd-B1 Vrn-B2
22 66283 CIGM98.777-1 Vrn-A1 Ppd-A1 - - - Ppd-B1 Vrn-B2
23 66277 CIGM91.347-4 Vrn-A1 Ppd-A1 - - vrn-B1 Ppd-B1 Vrn-B2
24 66275 CIGM91.346-2 Vrn-A1 Ppd-A1 - Vrn-B1c vrn-B1 Ppd-B1 Vrn-B2

Выводы

С помощью восьми аллель-специфичных маркеров 
определены генотипы образцов изучаемой выборки ско-
роспелых образцов твердой пшеницы по локусам Vrn-А1, 
Vrn-B2, Vrn-В3, Ppd-A1, Ppd-B1.

В вегетационном опыте по валидации генотипов 
образцов с идентифицированными генами скороспелости 
и фотопериодической чувствительности подтверждена 
слабая реакция на длину дня у пяти мексиканских линий, 
маркированных доминантными аллелями Vrn и Ppd  – 
Plata  11 (к-68347), Garcilla 2 (к-68350), Nyasa 2 (к-68355), 
Labud 15 (к-68360) и Ting 7 (к-68361).

По результатам фенотипического анализа и молеку-
лярного генотипирования выделены 24 источника генов 
скороспелости твердой пшеницы.
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