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Сафлор (Carthamus tinctorius L.), относящийся к семейству сложноцветных (Asteraceae), – важная масличная культура, его семена богаты 
жирными кислотами, в частности олеиновой и линолевой. Сафлор используется также в декоративных целях; на протяжении столетий 
его активно выращивали во многих странах мира. В последние годы особый интерес вызывают вторичные метаболиты, получаемые из 
соцветий сафлора, в частности флавоноиды. Флавоноиды сафлора можно разделить на две группы: специальные, представленные 
хинохалконами, и общие. Многие из этих веществ существенно влияют на окраску соцветий сафлора, которая изменяется в зависимости 
от стадии цветения (от желтой к оранжевой и красной при увядании). Флавоноиды сафлора активно используются в медицине и в качестве 
натуральных красителей при изготовлении тканей, косметики, а также в пищевой промышленности. Процесс биосинтеза пигментов 
в соцветиях до сих пор изучается, остаются неисследованными многие этапы, неизвестны механические аспекты их образования. Особый 
интерес представляет синтез красного пигмента  – картамина, уникального димерного хинохалкона, добываемого только из оранжевых 
и  красных соцветий сафлора. При правильном очищении этот пигмент приобретает металлический золотистый блеск. В исследовании 
2021 года из соцветий сафлора были выделены белки картамин-синтазы (CarS), отвечающие за заключительный этап преобразования 
прекартамина в картамин. Гены CarS (CtPOD1, CtPOD2 и CtPOD3) экспрессируются в тканях сафлора независимо от окраски цветка. 
Предположительно, прекартамин накапливается в структурах венчика, которые физически отделены от клеточного компартмента, 
содержащего CarS. В ходе старения клетки соцветия сафлора разрушаются, что позволяет CarS взаимодействовать с прекартамином 
и образовывать картамин, который адсорбируется клеточной стенкой венчика и тем самым достигается стабилизация красной пигментации. 
В этом обзоре собраны данные об особенностях синтеза картамина, особенно о последнем этапе  – преобразовании прекартамина 
в картамин и накопление его в соцветиях.
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Abstract: Safflower (Carthamus tinctorius L.), a member of the Asteraceae family, is an important oilseed crop; its seeds are rich in fatty acids, 
particularly oleic and linoleic. Safflower is also used for ornamental purposes and has been extensively cultivated in many countries for centuries. 
In recent years, secondary metabolites obtained from safflower inflorescences, particularly flavonoids, have attracted particular interest. Safflower 
flavonoids can be divided into two groups: specialized flavonoids, represented by quinochalcones, and general ones. Many of these substances 
significantly influence the color of safflower inflorescences, which changes depending on the flowering stage (from yellow to orange and red at 
fading). Safflower flavonoids are widely used in medicine and as natural dyes in the manufacture of fabrics, cosmetics, and in the food industry. The 
process of pigment biosynthesis in inflorescences is still being studied; many stages remain unexplored, and the mechanical aspects of their formation 
are unknown. Of particular interest is the synthesis of the red pigment, carthamin, a unique dimeric quinochalcone extracted only from orange and 
red safflower inflorescences. When properly purified, this pigment acquires a metallic golden sheen. A 2021 study used safflower inflorescences for 
extracting carthamin synthase (CarS) proteins responsible for the final step in converting precarthamin to carthamin. The CarS genes (CtPOD1, 
CtPOD2, and CtPOD3) are expressed in safflower tissues regardless of flower color. Presumably, precarthamin accumulates in corolla cellular 
structures that are physically separated from the cellular compartment containing CarS. During floral senescence, cells degrade, allowing CarS to 
interact with precarthamin and form carthamin, which is adsorbed by the corolla cell wall, thereby stabilizing the red pigmentation. This review 
summarizes data on the specifics of carthamin synthesis, particularly the final step – the conversion of precarthamin to carthamin and its accumulation 
in inflorescences.
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Введение

Сафлор (Carthamus tinctorius  L.), представитель 
семейства сложноцветных (Asteraceae), относится к чис-
лу древнейших сельскохозяйственных культур, возделы-
ваемых человеком. Это растение традиционно выращи-
валось на протяжении столетий в Средиземноморье, на 
Ближнем Востоке, в Индии и Китае, и впоследствии рас-
пространилось по всему миру (Watanabe, 1977). Семена 
сафлора богаты жирными кислотами, включая олеиновую 
и линолевую кислоты, и поэтому растение выращивается 
как масличная культура (Knowles, 1965).

Сафлор применяется в медицине и используется при 
составлении букетов. Это теплолюбивая, засухоустой-
чивая культура короткого дня, хорошо приспособленная 
к  континентальному климату. Соцветия сафлора исполь-
зуют для получения уникального пигмента  – картамина, 
который применяется для окраски тканей, изготовления 
косметики и в качестве пищевого красителя. В Египте 
были раскопаны мумии, которые были завернуты в ткани, 
окрашенные красным красителем (Tamburini et al., 2019). 
Таким образом, картамин является экономически важным 
красителем растительного происхождения.

Получение картамина путем синтеза в промышлен-
ных масштабах на данный момент неосуществимо, поэ-
тому целесообразно изучение механизма биосинтеза 
пигментов в соцветиях сафлора для получения высоко-
картаминовых растений путем селекции. Кроме того, 
селекционная работа может быть направлена на улуч-
шение декоративных качеств сафлора, на модификацию 
таких признаков, как компактность куста, длительность 
и  обильность цветения, уникальная форма и окраска 
цветка, листьев, стеблей, устойчивость окраски лепестков 
цветка к выгоранию на солнце (Rakhmangulov, Tikhonova, 
2021; Rakhmangulov, 2022).

Окраска соцветий обусловлена взаимодействием 
нескольких генов, не все из которых на данный момент 
идентифицированы. Гены, отвечающие за синтез карта-
мина, долгое время были неизвестны. В 2021 году груп-
пой японских ученых были идентифицированы гены 
картамин-синтазы, отвечающие за ферментативный про-
цесс образования картамина из прекартамина (Waki et al., 
2021).

Ботаническое описание и особенности цветения

Сафлор Carthamus tinctorius  L.  – представитель 
семейства Сложноцветных (Asteraceae) с числом хромо-
сом 2n=24. Стебель прямостоячий, ветвящийся, голый, 
высотой до 90  см. Угол ветвей к стеблю варьирует от 
30° до 70°, а степень ветвления контролируется гене-
тически. Листья сидячие, ланцетные, ланцетоовальные 
или эллиптические, по краям с небольшими зубчиками, 
обычно оканчивающимися колючками, но встречают-
ся и неколючие разновидности. Корень сафлора стержне-
вой, сильно разветвленный, проникает на глубину до 2 м 
(Vakhrusheva, Ivanenko, 1985).

Соцветие  – корзинка диаметром 1,5-3,5  см. Цвет-
ки трубчатые с пятираздельным венчиком белой, желтой 
или красной окраски (рис. 1). Число соцветий на стеблях 
может достигать 50-60. Цветение начинается с соцветий 
на первичных ветвях, затем на вторичных и так далее. 
Оттенки оранжевого, желтого и красного цветов наибо-
лее распространены в начале цветения, но окраска соцве-
тия при его увядании становится более темной. Белые 
цветки встречаются редко. При созревании образуют-
ся белые семена, с толстыми плодовыми оболочками. 
Плод – семянка, с твердой, трудно раскалывающейся обо-
лочкой, которая составляет 40-50% массы семян. Семена 
при созревании не осыпаются.

Рис. 1. Типы окраски соцветий сафлора красильного 
А) Красная B) Желтая C) Белая

Fig. 1. Color types of safflower inflorescences 
A) Red B) Yellow C) White

A B C
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Наследуемость признака времени начала цвете-
ния была изучена Kotecha с использованием межвидо-
вых скрещиваний дикого и домашнего сафлора (Kotecha, 
1979). Время цветения было идентифицировано как коли-
чественно наследуемый признак, на который влияют 
доминантные, аддитивные и эпистатические эффекты 
различных генов (Gupta, Singh, 1988).

Наследование окраски соцветий у сафлора 
красильного

На данный момент единодушия в вопросе наследова-
ния окраски цветков сафлора красильного среди ученых 
нет. Hartman выделил три основных пигмента в цветках 

сафлора: красный пигмент картамин, сафлоровый жел-
тый и неопределенный желтый, а также описал несколь-
ко типов желтой окраски и кремового оттенка. (Hartman, 
1967). Другие исследователи описывали белую, свет-
ло-желтую, желтую, светло-оранжевую и  красно-оран-
жевую окраски (Urage, Weyessa, 1989). В  зависимости 
от стадии цветения, окраска соцветий может различать-
ся из-за количества синтезируемых в них пигментов. 
Образование картамина в  желто-оранжевых и крас-
ных соцветиях сафлора, по-видимому, является процес-
сом, связанным со старением. Венчик картаминобразую-
щих соцветий сафлора до полного цветения имеет цвет от 
желтого до оранжевого, а затем меняет цвет на краснова-
тый при увядании цветка (Рис. 2).

Рис. 2. Изменение окраски соцветий на разных стадиях цветения 
А) Начало цветения; B) Частичное раскрытие соцветия; C) Полное раскрытие соцветия; D) Начало 

увядания, окраска становится темнее; E) Увядшее соцветие, окраска красная

Fig. 2. Changes in the color of inflorescences at different stages of flowering 
A) Beginning of flowering; B) Partial opening of the inflorescence; C) Full opening of the inflorescence; 

D) Beginning of withering, the color becomes darker; E) Withered inflorescence, the color is red

Образец к-123 (Казахстан). Слабое накопление картамина

Образец к-277 (Китай). Сильное накопление картамина

A B C D E

В работе Narkhede и Deokar были идентифицирова-
ны четыре основных гена, определяющих окраску соцве-
тий сафлора: Y, C, O и R. Ген C и различные комбинации 
(CO, CR, COR) давали белый цвет; YC – красный; а YCO 
и YCOR – желтый цвет (Narkhede, Deokar, 1986). Некото-
рые исследователи обнаружили, что белая окраска сафло-

ра обусловлена эпистатическим взаимодействием генов, 
которое может быть как доминантным, так и рецессив-
ным в других случаях проявления признака окраски 
соцветий. (Narkhede, Deokar, 1990).

В исследованиях с использованием гибридологиче-
ского метода (Leus, 2016) было показано, что гены, коди-
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рующие окраску цветков у сафлора, вступают в разно-
образные взаимодействия. По отдельности ген О дает 
желтую окраску, ген R  – красную, С  – желтую, ген Y не 
проявляется. Гены O и R взаимодействуют комплементар-
но с образованием оранжевой окраски. Взаимодействие 
гена С с генами O и R происходит по типу доминантно-
го эпистаза, а гена Y и генов C, O и R – с по типу рецес-
сивного эпистаза. Рецессивная гомозигота по гену yy дает 
белую окраску цветка. Однако, по мнению авторов рабо-
ты (Pahlavani, 2004), рецессивный аллель гена Y не всегда 
приводит к подавлению окраски.

Флавоноиды сафлора можно разделить на две группы: 
специальные, представленные хинохалконами (24  сое-
динения), и общие (43 соединения), включающие флаво-
ноиды, флавонолы и дигидрофлавоноиды. Специальная 
группа обладает уникальной структурой и фармаколо-
гической активностью, используется при лечении сер-
дечно-сосудистых и цереброваскулярных заболеваний. 
Хинохалконовые соединения, такие как гидрокси-сафло-
ровый жёлтый  А (HSYA), сафлоровый жёлтый  А и кар-
тамин, присутствуют только в сафлоре и относятся пре
имущественно к С-гликозидам. Распространенные 
группы флавоноидов представлены кемпферолом, гипе-
розидом и  нарингенином, а продукты гликозилирования 
флавоноидов относятся к О-гликозидам (Yue et al., 2013).

Был изучен ген флаванон-3-гидроксилазы, содержа-
щий открытую рамку считывания длиной 1086  пн. При 
стимуляции метилжасмонатом экспрессия была выше, 
что связано с накоплением хинохалконов и флавонолов 
(Tu et  al., 2016). Анализ ДНК из цветков сафлора позво-
лил идентифицировать ген флавонолсинтазы с открытой 
рамкой считывания длиной 1011 пн (Yang et al., 2015). Был 
клонирован полноразмерный ген антоцианидинсинта-
зы длиной 1226 пн. Этот ген кодирует три функциональ-
ных домена белка ANS, содержащих сайты связывания 
2-оксоглутарата и ионов железа (Liu et  al., 2015). Иссле-
дование показало, что экспрессия генов CHS, CHI и ANS 
в разные периоды цветения влияет на синтез и содержа-
ние желтого пигмента сафлора. Помимо этого, фермент, 
называемый картамин-синтазой (CarS), также определяет 
окраску цветков сафлора, поскольку CarS может катали-
зировать образование и разложение картамина (Liu et al., 
2015).

Гликозилтрансферазы могут переносить гликозиль-
ные фрагменты с активированных доноров сахара на 
определенные акцепторы. Был проведен скрининг соро-
ка пяти генов UDP-гликозилтрансферазы (UGT) сафло-
ра. Для характеристики функций UGT в сафлоре гены 
CtUGT3, CtUGT16 и CtUGT25 были клонированы. Изу-
чение субклеточной локализации экспрессии трёх генов 
показало, что она может происходить как в цитоплаз-
ме, так и в хлоропластах клеток. Экспрессия всех трёх 
UGT была подавлена в двух линиях, чувствительных 
к индукции метилжасмонатом. Была продемонстриро-
вана положительная связь между характером экспрес-
сии генов и накоплением метаболитов, а именно CtUGT3 

и CtUGT25 и кемпферол-3-O-β-D-глюкозида, tUGT16 
и кверцетин-3-O-β-D-глюкозида в желтом сафлоре, а так-
же CtUGT3 и CtUGT25 и кверцетин-3-O-β-D-глюкозидина 
в белом сафлоре (Guo et al., 2016).

У сафлора были клонированы два гена CHI. Один 
имел полную длину 696 пн, а другой – 1161 пн. Дальней-
шие исследования показали, что накопление HSYA и экс-
прессия гена CHI длиной 696  пн имели схожую тен-
денцию во время цветения (Ren et  al., 2019). Временная 
экспрессия в клетках мезофилла табака показала, что ген 
CHI длиной 1161  пн может влиять на накопление флаво-
ноидов на разных стадиях цветения сафлора (Liu et  al., 
2019).

Синтез флавоноидов является важным компонентом 
метаболизма фенилпропаноидов. У Arabidopsis халкон-
синтаза, один из ключевых ферментов биосинтеза фла-
воноидов, катализирует превращение п-кумароил-КоА 
в тетрагидроксихалкон. В свою очередь, тетрагидрокси-
халкон преобразуется в нарингенин с помощью халкон
изомеразы. Нарингенин может генерировать генистеин 
под действием изофлавонсинтазы. Флавонсинтаза ката-
лизирует преобразование генистеина в апигенин, а так-
же может образовывать дигидрофлавонол под действием 
флаванон-3-гидроксилазы, флавоноид-3’-гидроксилазы 
и  флавоноид-3’5’-гидроксилазы. Дигидрофлавонол обра-
зует кверцетин или лейкоантоцианидины посредством 
катализа флавонолсинтазой или дигидрофлавонол-4-ре-
дуктазой (Wen et al., 2020; Davies et al., 2020).

Многие гены синтеза флавоноидов были успешно 
клонированы для анализа характера их экспрессии и изу-
чения функций. У сафлора дифференциальная экспрессия 
гена халкон-синтазы может влиять на тип и содержание 
флавоноидов в цветках, а также на окраску этих цветков 
(Wang et al., 2021).

Процесс цветения и смены окраски соцветий сафлора 
довольно сложен. При смене окраски с желтой на крас-
ную обнаружено 212 метаболитов флавоноидов и 4820 
дифференциально экспрессирующихся генов (Ren et  al., 
2022). Исследования показали, что содержание гидрок-
си-сафлорового желтого  А и картамина существенно 
меняется в зависимости от стадии развития соцветия: 
количество желтых пигментов постепенно снижается 
к концу цветения, а картамин с 0,28 мкг/мг возраста-
ет до 1,60 мкг/мг (Pu et al., 2021). Также были обнаруже-
ны антоцианы, предположительно влияющие на окрас-
ку соцветий. Содержание четырех антоцианов в цветках 
изменялось по-разному, из них два антоциана (О-гексо-
зид пеонидина и 3,5-О-диглюкозид цианидина) накапли-
вались во время перехода окраски от желтой к красной 
(Ren et al., 2022).

Картамин

Картамин, димерный хинохалкон (рис. 3), – флавоно-
ид, умеренно растворимый в воде, получают из оранже-
вых и красных соцветий сафлора. Пигмент очень неста-
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билен и разлагается под воздействием щелочей и кислот, 
а также света. Предположительно синтез таких вторич-
ных метаболитов, как картамин, может быть важен для 
выживания растения в условиях стресса или для защи-
ты от микроорганизмов (Singer et  al., 2003). Картамин  – 
натуральный красный краситель, который используется 
во всем мире уже более 4500 лет для окраски тексти-
ля, в косметике и в качестве пищевого красителя. Кроме 

того, в определенных условиях, картамин может давать 
золотисто-зеленый металлический блеск, происхожде-
ние и природа которого до сих пор не выяснены, но он 
активно используется в декоративных целях. В Японии 
красный пигмент на основе картамина называли «бени» 
(что означает «красный») и на протяжении более 1400 лет 
использовали преимущественно для окрашивания тканей, 
например кимоно (Kosoto, 2007).

Рис. 3. Структура картамина
Fig. 3. Structure of carthamin

Структура пигмента вызывала интерес с 1910 года 
(Kametaka, Perkin, 1910). Seshadri в 1960 году предложил 
мономерную структуру О-гликозида (Seshadri, Thakur, 
1960), которая затем была опровергнута. В 1980 году две 
независимые группы предположили его структуру, в кото-
рой две единицы C-гликозилхинохалкона соединены 
одним углеродным центром, образуя сопряженную систе-
му с характерной C2-симметричной структурой. В 1996 
году Sato с коллегами (Sato et  al., 1996) сделали предпо-
ложения, касающиеся структуры соединения. Молекуляр-
ная структура была построена путем объединения двух 
эквивалентов литированных мономеров, полученных 
in situ, и триизопропилортоформиата. В дальнейшем пол-
ный синтез подтвердил структуру, предложенную в 1996 
году (Azami et al., 2019).

Путь синтеза картамина в растениях сафлора дол-
гое время оставался неясным. Ранее предполагалось, что 
картамин образуется из прекартамина, водораствори-
мого хинохалкона, посредством одного ферментативно-
го процесса, катализируемого полифенолоксидазой или 
пероксидазой (Shimokoriyama, Hattori, 1955). Saito с соав-
торами (Saito et  al., 1998) наблюдали, как окисляют свои 
субстраты-доноры водорода с образованием H2O2, кото-
рый, в свою очередь, реагирует с прекартамином с обра-
зованием картамина; таким образом, они предположили, 
что красная пигментация венчика сафлора опосредова-

на оксидазами. Анализ in  vitro показал, что пероксида-
за хрена, способна катализировать образование картами-
на из прекартамина в присутствии H2O2 (Kumazawa et al., 
1995) и в её отсутствие (Abe et  al., 2020). Однако натив-
ная пероксидазная активность неочищенного экстракта 
соцветий сафлора разлагает картамин in  vitro (Kanehira, 
Saito, 1990). В исследовании, проведенном Waki с соав-
торами (Waki et al., 2021) были идентифицированы гены, 
кодирующие фермент картамин-синтазу CarS, ответ-
ственную за образование картамина из прекартамина.

Гены картамин-синтазы CarS

В исследовании Waki с соавторами (Waki et  al., 2021) 
из соцветий сафлора был выделен фермент картамин-син-
таза CarS. Очищенный фермент CarS катализирует окис-
лительное декарбоксилирование прекартамина с образо-
ванием картамина, используя O2 вместо H2O2 в качестве 
акцептора электронов. Кроме того, фермент CarS так-
же катализирует разложение картамина, однако это фер-
ментативное разложение можно обойти путем адсорбции 
пигмента на целлюлозе.

Очищенный фермент был подвергнут обработке трип-
сином с последующим анализом полученных пепти-
дов методом жидкостной хроматографии с тандемной 
масс-спектрометрией (ЖХ/МС/МС). На основе частич-
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ных аминокислотных последовательностей исследовате-
ли клонировали кДНК (англ. complementary, cDNA) трёх 
изозимов CarS, CtPOD1, CtPOD2 и CtPOD3, и установи-
ли, что они гомологичны пероксидазе. Анализ получен-
ных аминокислотных последовательностей показал, что 
CtPOD1, CtPOD2 и CtPOD3 были на 50%, 38% и 41%, 
соответственно, идентичны последовательностям перок-
сидазы хрена и имели общие консервативные последо-
вательности активного сайта пероксидазы. Очищенный 
CarS (CtPOD1) был способен катализировать образование 
картамина из прекартамина в отсутствие H2O2 при pH 5,0. 
Было также подтверждено, что пероксидаза хрена катали-
зирует образование картамина в отсутствие H2O2. Однако 
для пероксидазы хрена и CtPOD1 активность CarS была 
максимальной в присутствии 0,25-0,5 мМ H2O2, составляя 
соответственно 370 и 570% от активности в отсутствие 
H2O2.

Гены, кодирующие изоферменты CtPOD, экспрессиро-
вались не только в соцветиях оранжевого сафлора, проду-
цирующего картамин, но также в тканях и органах, кото-
рые его не содержат (Waki et al., 2021).

Оранжевые соцветия накапливали небольшое количе-
ство прекартамина, включая сафлоровый желтый, дости-
гая максимальной концентрации на стадии увядания. 
Напротив, в белых соцветиях пигменты отсутствовали. 
Исследование венчиков оранжевого сорта под световым 
микроскопом показало, что желтые пигменты накапли-
ваются исключительно в вакуолях клеток венчика, тогда 
как красные пигменты, а именно картамин, адсорбируют-
ся на нерастворимых внеклеточных веществах (Waki et al. 
2021).

Была обнаружена тканеспецифичность экспрессии 
генов картамин-синтазы. Так, CtPOD1 экспрессировал-
ся в бутонах, соцветиях, листьях и венчике оранжевого 
сорта, у которого бутоны, листья и венчик не накаплива-
ют картамина. CtPOD1 также обильно экспрессировался 
в соцветиях белого сорта, где прекартамин и другие жел-
тые хинохалконы отсутствовали. CtPOD2 экспрессиро-
вался в оранжевых и белых соцветиях, тогда как в буто-
нах, листьях и венчике оранжевого сорта транскрипты не 
обнаруживались или их содержание находилось на низ-
ком уровне, что позволяет предположить, что экспрессия 
CtPOD2 специфична для соцветий. Транскрипты CtPOD3 
наиболее часто обнаруживались в венчике, в сравнении 
с  другими исследованными тканями и органами (Waki  
et al. 2021).

Среди паралогов генов пероксидазы, экспрессируе-
мых в оранжевых соцветиях, два дополнительных пара-
лога, названные CtPOD4 и CtPOD5, имели более высокий 
уровень транскрипции, чем у CtPOD1, CtPOD2 и CtPOD3, 
а экспрессия CtPOD5, по-видимому, была специфич-
ной для соцветия. Однако белки, продукты генов CtPOD4 
и CtPOD5, не были идентифицированы в ходе исследова-
ний. Предположительно только ограниченное количество 
паралогов пероксидазы, CtPOD1, CtPOD2 и CtPOD3, уча-
ствуют в красной пигментации соцветий сафлора, одна-

ко точных данных относительно этого пока нет. Следует 
также отметить, что ранее предполагалось, что глюкозоок-
сидаза опосредует образование картамина из прекартами-
на в сафлоре (Saito, 1993). Однако участие этого фермен-
та в красной пигментации цветков сафлора маловероятно, 
поскольку у этого растения не обнаружено считывания 
информации с транскрипта глюкозооксидазы. Результа-
ты транскриптомного анализа показали, что в оранже-
вых соцветиях сафлора экспрессируется 134 паралога гена 
пероксидазы (Waki et  al. 2021). Это наблюдение, а также 
тот факт, что пероксидаза хрена способна катализировать 
образование картамина из прекартамина, позволяет пред-
положить, что другие паралоги генов, кодирующих перок-
сидазы, экспрессируемые в соцветиях сафлора, также 
могут участвовать в синтезе картамина.

Заключение

Результаты проведенных исследований позволяют 
предположить следующий возможный сценарий крас-
ной пигментации соцветий сафлора. Гены CarS – CtPOD1, 
CtPOD2 и CtPOD3 – экспрессируются в соцветиях и дру-
гих тканях растения сафлора, что не обязательно опреде-
ляет окраску цветка. У сортов, продуцирующих картамин, 
прекартамин, вероятно, накапливается в клеточных струк-
турах венчика, которые физически отделены от клеточ-
ного компартмента, содержащего CarS. В ходе старения 
цветков структурная целостность клеток венчика, веро-
ятно, нарушается, что позволяет CarS колокализовать-
ся с прекартамином для продукции картамина. Получен-
ный таким образом картамин адсорбируется клеточной 
стенкой венчика и нерастворимым внеклеточным матрик-
сом и, тем самым, достигается стабилизация красной пиг-
ментации. Синтез хинохалконов в сафлоре все еще слабо 
изучен и для полного использования потенциала вторич-
ных метаболитов этого растения необходимы дальнейшие 
исследования.
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