Long-term preservation of modern Russian potato cultivars in the VIR cryobank
https://doi.org/10.30901/2658-6266-2020-3-o1
Abstract
Cryopreservation of shoot-tips (apexes) excised from in vitro plants is used for long-term preservation of potato cultivars. The most widely used method for creating potato cryo-collections is droplet-vitrification of shoot-tips which, together with its numerous modifications, is widely used in genebanks. A modified protocol of droplet vitrification method is used at VIR for cryopreservation of shoot tips from in vitro potato plants. This paper presents the results of cryopreservation of modern cultivars which were released by seven Russian breeding centers. In vitro clones used in the cryopreservation experiments were genetically identical to the cultivars’ nomenclatural standards and herbarium vouchers.The frequency of post-thaw regeneration in control experiments after short-term cryopreservation varied from 23.3 to 53.3%, depending on the genotype. Five out of 16 accessions (‘Varâg’, ‘Gusar’, ‘Evpatij’, ‘Solnečnyj’, ‘Tango’)* had low post-cryogenic regenerative capacity from 20 to 30%; the regeneration rate exceeded 30% in 11 accessions, and 8 cultivars (‘Grand’, ‘Zlatka’, ‘Lina’, ‘Safo’, ‘Siverskij’, ‘Signal’, ‘Utro’, ‘Ûna’) and ‘Аlyj Parus’ breeding clone had regeneration rate above 40%. The regeneration rate in the studied subset was genotype independent according to the ANOVA results (p=0.711). Viability and regeneration rate were significantly correlated (r=0.86). As a result of the experiments, explants of 14 modern cultivars and two breeding clones with the known post-thaw regeneration rate were successfully cryopreserved in the VIR cryobank. Four cultivars (‘Grand’, ‘Gusar’, ‘Signal’, ‘Utro’) were monitored for their regeneration capacity after the long-term (seven months) preservation in the VIR cryobank. On an average, these four cultivars demonstrated a post-thaw regeneration capacity of 41.8%. It can be concluded that the use of the modified method of droplet vitrification is relevant for increasing the VIR potato cryo-collection.
About the Authors
O. S. EfremovaRussian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
N. N. Volkova
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
T. A. Gavrilenko
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
References
1. Bamberg J.B., Martin M.W, Abad J, Jenderek M.M., Tanner J., Donnelly D.J., Nassar M.K, Veilleux R.E., Novy R.G. In vitro technology at the US Potato Genebank. In Vitro Cellular & Developmental Biology – Plant. 2016;52(3):213-225. DOI: 10.1007/s11627-016-9753-x
2. Brickell C.D., Alexander C., Cubey J.J., David J.C., Hoffman M.H.A., Leslie A.C., Malécot V., Xiaobai Jin (eds). International code of nomenclature for cultivated plants. Ed. 9. Scripta Horticulturae. 2016;18:I–XVII+1190.
3. CIP. The genebank of the International Potato Center conserves potato and sweet potato diversity. Centro Internacional de la Papa. Available at https://genebanks.org/genebanks/international potato center. [accessed Jan. 22, 2018].
4. Dunayeva S.Y., Pendinen G.I., Antonova O.Y., Shvachko N.A., Volkova N.N., Gavrilenko T.A. Preservation of vegetatively propagated crops in in vitro and cryo-collections: methodological guidelines. (Sokhraneniye vegetativno razmnozhayemykh kultur v in vitro i kriokollektsiyakh: metodicheskiye ukazaniya). T.A. Gavrilenko (ed.). St. Petersburg: VIR; 2011. [in Russian]
5. Dunayeva S.E., Pendinen G.I., Antonova O.Yu., Shvachko N.A., Ukhatova Yu.V., Shuvalova L.E., Volkova N.N., Gavrilenko T.A. Preservation of vegetatively propagated crops in in vitro and cryo collections: methodological guidelines (Sokhraneniye vegetativno razmnozhayemykh kultur v in vitro i kriokollektsiyakh: metodicheskiye ukazaniya). T.A. Gavrilenko (ed.). St. Petersburg: VIR, 2017. [in Russian]
6. Gavrilenko Т., Dunayeva S., Truskinov E., Antonova O., Pendinen G., Lupysheva Y., Rogovaja V., Shvachko N. Strategy of long-term conservation of germplasm of vegetatively propagated crops under controlled conditions. Proceedings on Applied Botany, Genetics and Plant Breeding. 2007;164:273-285 [in Russian]
7. Gavrilenko T.A., Shvachko N.A., Volkova N.N., Ukhatova Yu.V. A modified droplet vitrification method for cryopreservation of shoot tips from in vitro potato plants. Vavilov Journal of Genetics and Breeding. 2019;23(4):422-429. [in Russian] DOI: 10.18699/VJ19.505.
8. Hirai D. Gelled droplet vitrification improves recovery of cryopreserved potato germplasm. CryoLetters. 2011;32(4):287-296.
9. Jenderek M. M., Reed B.M. Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cellular and Developmental Biology – Plant. 2017;53(4):299-308. DOI: 10.1007/s11627-017-9828-3
10. IPGRI. Cryopreservation of tropical plant germplasm. Current research progress and applications. Engelmann F., Takagi H. (eds.). 2000.
11. Keller E.R.J., Senula A., Grübe M., Diekmann K., Dehmer K.J. Fifteen years of cryopreservation in the IPK Genebank – experience, conclusions and outlook. Acta Horticulturae. 2014;1039:249-263. DOI: 10.17660/ActaHortic.2014.1039.32
12. Kim H.H., Yoon J.W., Park Y.E., Cho E.G., Sohn J.K., Kim T.S., Engelmann F. Cryopreservation of potato cultivated varieties and wild species: critical factors in droplet vitrification. CryoLetters. 2006;27(4):223-234.
13. Muthoni J., Shimelis H., Melis R. Long-term conservation of potato genetic resources: methods and status of conservation. Australian Journal of Crop Science. 2019;13(05):717-725. DOI: 10.21475/ajcs.19.13.05.p1400
14. Niino T., Arizaga M.V. Cryopreservation for preservation of potato genetic resources. Breeding Science. 2015;65(1):41-52. DOI: 10.1270/jsbbs.65.41.
15. Panis B., Piette B., Swennen R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Science. 2005;168:45-55. DOI: 10.1016/j.plantsci.2004.07.022
16. Panis B., Van den Houwe I., Swennen R., Rhee J., Roux N. Securing plant genetic resources for perpetuity through cryopreservation. Indian Journal of Plant Genetic Resources. 2016;29(3):300-302. DOI: 10.5958/0976-1926.2016.00051.6
17. Panta A., Panis B., Ynouye C., Swennen R., Roca W., Tay D., Ellis D. Improved cryopreservation method for the long-term conservation of the world potato germplasm collection. Plant Cell, Tissue and Organ Culture. 2015;120:117-125. DOI: 10.1007/s11240-014-0585-2
18. Shvachko N., Gavrilenko T. Cryopreservation of potato landraces using droplet-vitrification method. In: Grapin A., Keller J., Lynch P., Panis B., Revilla A., Engelmann F. (Eds.). Cryopreservation of Crop Species in Europe: Proceedings of COST Action 871 Final meeting. Angers, France, 2011; 135137.
19. Stock J., Mock H.P., Senula A., Nagel M. Arabidopsis – a model to elucidate complex stress response mechanism during cryopreservation. Acta Horticulturae. 2019;1234:85-96. DOI: 10.17660/ActaHortic.2019.1234.11
20. Ukhatova Y.V., Oves E.V., Volkova N.N., Gavrilenko T.A. Сryoconservation of potato breeding cultivars at VIR. Proceedings on Applied Botany, Genetics and Breeding. 2017;178(3):13-20 [In Russian] DOI: 10.30901/2227-8834-2017-3-13-20
21. Ukhatova Y.V., Gavrilenko T.A. Cryoconservation methods for vegetatively propagated crops (review). Plant Biotechnology and Breeding. 2018;1(1):5263 [In Russian] DOI: 10.30901/26586266201815263
22. Vollmer R., Villagaray R., Egusquiza V., Espirilla J., Garcia M., Torres A, Rojas E., Panta A, Barkley N.A, Ellis D. The potato cryobank at the International Potato Center (CIP): a model for longterm conservation of clonal plant genetic resources collections of the future. CryoLetters. 2016;37(5):318-329.
23. Vollmer R., Villagaray R., Cárdenas J., Castro M., Chávez O., Anglin N.L., Ellis D. A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). In Vitro Cellular and Developmental Biology – Plant. 2017;53(4):309-317. DOI: 10.1007/s11627-0179846-1
Review
For citations:
Efremova O.S., Volkova N.N., Gavrilenko T.A. Long-term preservation of modern Russian potato cultivars in the VIR cryobank. Plant Biotechnology and Breeding. 2020;3(3):68-76. (In Russ.) https://doi.org/10.30901/2658-6266-2020-3-o1