Отдаленная гибридизация как метод получения гаплоидных растений у злаков
https://doi.org/10.30901/2658-6266-2019-2-44-52
Аннотация
В статье представлен обзор литературы по получению гаплоидных растений у злаков методом отдаленной гибридизации и механизмы, лежащие в основе селективной элиминации хромосом одного из родительских геномов во время раннего развития зародыша. Элиминация хромосом – распространенный феномен у отдаленных гибридов, который, проявляется в разной степени в различных комбинациях: от потери одной или двух хромосом до элиминации полного набора хромосом одного из родителей. В последнем случае возникают гаплоидные растения, удвоение числа хромосом которых приводит к получению удвоенных гаплоидов (DH‑линий). Гомозиготность удвоенных гаплоидов послужила основой для их широкого использования в генетике и селекции растений. Использование данного подхода позволяет сократить время получения гомозиготных линий в среднем на пять лет, что приводит к экономии, людских ресурсов и посевных площадей. Разработка «bulbosum» метода получения гаплоидов ячменя оказала революционное влияние на хромосомную инженерию злаков и ее использование в селекции растений. Однако разработанный на этой основе метод не мог эффективно использоваться для получения гаплоидов пшеницы, тритикале и других злаков из‑за чувствительности пыльцы Hordeum bulbosum L. к генам‑ингибиторам скрещиваемости пшеницы (Kr‑генам). Эффективным опылителем для различных видов злаков явилась кукуруза. Скрещивания с дикорастущим злаком Imperata cylindrica (L.) Raeusch. выявили преимущества по сравнению со скрещиваниями пшеница × кукуруза и тритикале × кукуруза благодаря длительной продолжительности цветения этого вида и высокой частоте формирования зародышей и регенерации гаплоидных растений.
Ключевые слова
Об авторах
Т. И. ДьячукРоссия
410010, Россия, г. Саратов, ул. Тулайкова, 7
В. Н. Акинина
Россия
410010, Россия, г. Саратов, ул. Тулайкова, 7
О. В. Хомякова
Россия
410010, Россия, г. Саратов, ул. Тулайкова, 7
Э. В. Калашникова
Россия
410010, Россия, г. Саратов, ул. Тулайкова, 7
Список литературы
1. Ahmad J, Chowdhry MA (2005) Effects of different ploidy level in wheat (hexaploids and tetraploids) on seed and embryo formation and haploid production in wheat × maize crosses. J. Biol. Sci. 8: 1758–1761.
2. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum L.) by chromosome elimination. Nature 256: 410–411.
3. Bennet MD, Finch RA, Barclay TR (1976) The time and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma (Berl.) 54: 175–200.
4. Bhojwani SS, Dantu PK (2013) Zygotic embryo culture. Plant Tissue Culture: An Introductory Text p. 327–340. DOI: 10.1007/978-81-322-1026-9_11
5. Charmet G, Bernard S, Bernard M (1986) Origin of aneuploid plants obtained by anther culture in triticale. Canad. J. Genet. Cytol. 28 (3): 444–452. DOI: 10.1139/g86-067
6. Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter × spring wheat hybrids. J. Genet. Breed. 56: 259–266.
7. Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. Nucleus 56 (1): 7–14. DOI: 10.1007/s13237-013-0077-5
8. Chaudhary HK, Kaila V, Rather SA (2014) Distant hybridization and doubled haploid breeding. In: Alien Gene Transfer in Crop Plant: Innovations, Methods and Risk Assesment. A Pratap, J Kumar (eds.) 1: 143–164. DOI: 10.1007/978-1-1614-8585-8_6
9. Chaudhary HK, Kaila V, Ratner SA et al. (2016) Chromosome engineering for high precision crop improvement. In: Gene Pool Diversity and Crop Improvement. VR Rajpal et al. (eds.) p. 291–323. DOI: 10.1007/978-3-319-27096-8_10
10. Chen FQ, Hays PM (1989) A comparison of Hordeum bulbosum-mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor. and Appl. Genet. 77: 701–704.
11. Cherkaoui S, Lamsaouri O, Chlyah A, Chlyah H (2000) Durum wheat × maize crosses for haploid wheat production: influence of parental genotypes and various experimental factors. Plant Breed. 119: 31–36.
12. Чистякова В.Н. Гаплоиды неполных пшенично-пырейных амфидиплоидов, мягкой пшеницы и ячменя: получение и использование. М.: МАКС Пресс, 2000. 355 с.
13. Davies DR (1974) Chromosome elimination in inter-specific hybrids. Heredity 32: 267–270.
14. Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Biotechnology in Agriculture and Forestry. CE Palmer, WA Keller, KJ Kasha (eds.) 56: 215–242. DOI: 10.1007/3-540-26889-8_11
15. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotech. J.8 : 377–424.
16. Дьячук Т.И. Технологические и селекционные аспекты гаплоидии на примере пшеницы и ячменя: дис. … доктора биол. наук. Саратов, 2003. 280 с.
17. Дьячук Т.И., Акинина В.Н., Хомякова О.В., Поминов А.В. Гаплоидия в селекции тритикале // Зерновое хозяйство России. 2012. T. 2. № 20. С. 25–29.
18. Eudes F, Chugs A (2009) An overview of triticale doubled haploids. In: Advances in Haploid Production in Higher Plants. A Toyraev et al. (eds.) p. 87–113.
19. Filippis LF (2014) Crop improvement through tissue culture. In: Improvement of Crops in the Era of Climatic Changes. P Ahmad et al. (eds.) 1: 289–346. DOI: 10.1007/978-1-4614-8830-9_12
20. Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare × Hordeum bulbosum crosses at mitosis and inrephase involves micronucleus formation and progressive heterochromatinization. Cytogenet. Genome Res. 114: 169–174.
21. Gosal SS, Wani SH (2018) Cell and tissue culture approaches in relation to crop improvement. In: Biotechnologies of Crop Improvement. S.S. Gosal, S.H. Wani (eds.) 1: 1–42. DOI: 10.1007/978-3-319-78283-6_1
22. Gupta SB (1969) Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginiolia and a hybrid derivative of N. tabacum showing chromosome instability. Can. J. Genet. Cytol. 11: 133–142.
23. Hazarica RR, Mishra VK, Chaturved R (2013) In vitro haploid production – a fast and reliable approach for crop improvement. In: Crop Improvement Under Adverse Conditions. J Tutja, SS Gills (eds.) p. 171–211. DOI: 10.1007/978-1-46-14-4633-0_8
24. Houben A, Saney M, Pickering R (2011) Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell Tiss. Organ Cult. 104: 321–327. DOI: 10.1007/s11240-010-9856-8
25. Humphreys MB (1978) Chromosome instability in Hordeum vulgare × Hordeum bulbosum hybrids. Chromosoma 65: 301–307.
26. Humphreys DG, Knox RE (2015) Doubled haploid breeding in cereals. In: Advances in Plant Breeding: Breeding Biotechnology and Molecular Tools. Al-Khayri et al. (eds.) p. 241–288.
27. Игнатова С.А. Клеточные биотехнологии в растениеводстве, генетике и селекции возделываемых растений: задачи, возможности, разработки систем in vitro: монография. Одесса: Астропринт, 2011. 224 с.
28. Inagaki MN, Mujeeb-Kazi (1995) Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Breed. Sci. 45: 157–161.
29. Inagaki MN, Nagamine T, Mujeeb-Kazi (1997) Use of pollen storage and detached pollen culture in wheat polyhaploid production through wide crosses. Cereal Research Com. 25: 7–13.
30. Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Research 18: 821–831.
31. Jalani BP, Moss JP (1980) The site of action of the crossability genes (Kr1, Kr2) between Triticum and Secale. 1. Pollen germination, pollen tube growth and number of pollen tubes. Euphytica 29: 571–579.
32. Jauhar PP, Xu SS, Baenziger PS (2008) Haploidy in cultivated wheats: induction and utility in basic and applied research. Crop Sci. 49: 737–755.
33. Jensen CJ (1977) Barley monoploids and doubled monoploids. In: Applied and fundamental aspects of plant cell, tissue and organ culture. J Reinert, YPS Bajaj (eds.) p. 316–343.
34. Jian GU, Kun LIU, Shaoxiang LI et al. (2008) Study of in vitro culture of cut plants in wheat embryo induction by wheat × maize cross. Front Agric. China 2 (4): 391–395. DOI: 10.1007/s11703-008-0070-y
35. Jin W, Melo JR, Nagaki K et al. (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16: 571–581.
36. Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. In: Haploids in Crop Improvement. D Palmer, W Keller, K Kasha (eds.) p. 123–152.
37. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (H. vulgare L.). Nature 225: 874–876.
38. Kasha KJ, Sadasivaiah RA (1971) Genome relationships between Hordeum vulgare L. and H. bilbosum L. Chromosoma. 35:264-287
39. Kishore N, Chaudhary K, Chahota R et al. (2011) Relative efficiency of the maize-and Imperata cylindrica-mediated chromosome elimination approaches for induction of haploids of wheat-rye derivatives. Plant Breed. 130: 192–194.
40. Komeda N, Chaudhary K, Suzuki G, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet. Syst. 82: 241–248.
41. Konzak CF, Randolph LE, Ensen NE (1951) Embryo culture of barley species hybrids, cytological studies of Hordeum sativum × Hordeum bulbosum. J. Hered. 42: 124–134.
42. Krzewska M, Czyczyło-Mysza I, Dubas E et al. (2012) Quantitative trait loci associated with androgenic responsiveness in triticale (× Triticosecale Wittm.) anther culture. Plant Cell Rep. 31: 2099–2108. DOI: 10.1007/s00299-012-1320-2
43. Kuckuck H (1934) Artkreuzunger by Gerste. Zuchter: Berlin, 6: 270–271.
44. Lange W (1971) Crosses between Hordeum vulgare L. and Hordeum bulbosum L. Production, morphology and meiosis of hybrids, haploids and dihaploids. Euphytica 20: 14–29.
45. Lantos C, Bona L, Boda K, Pauk J (2014) Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (× Triticosecale Wittmack) for androgenic parameters. Euphytica 197: 27–37. DOI: 10.1007/s10681-013-103
46. Laurie DA, Bennet MD (1986) Wheat × maize hybridizatuion. Can. J. Genet. Cytol. 28: 313–316.
47. Laurie DA, Bennet MD (1988a) The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet. 76: 393–397.
48. Laurie DA, Bennet MD (1988b) Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breed. 100: 73–82.
49. Laurie DA, Bennet MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32: 953–961.
50. Laurie DA (1989a) Factors affecting fertilization frequency in crosses of Triticum aestivum cv. Highbury × Zea mays cv. «Seneca 60». Plant Breed. 103: 133–140.
51. Laurie DA (1989b) The frequency of fertilization in wheat × pearl millet crosses. Genome 32: 1063–1067.
52. Lei ZS, Zhou Y, He XC et al. (1996) Efficient wheat haploid production by wheat × maize crosses. 5th Int. Wheat Conference. June 10-14: Ankara. Turkey: p. 374.
53. Lehmann C, Krolov KD (1991) Experiments on haploid production from tetraploid triticales by the Hordeum bulbosum system and anther culture. Cereal Research Communications 19: 283–290.
54. Linde-Laursen I, von Bothner R (1999) Aberrant meiotic divisions of a Hordeum lechleri × Hordeum vulgare hybrids. Hereditas 118: 145–153.
55. Liu D, Zxang H, Zxang L et al. (2014) Distant hybridization: a tool for interspecific manipulation of chromosomes. In: Alien Gene Transfer in Crop Plants. A Pratap, J Kumar (eds.) 1: 25–42. DOI: 10.1007/978-1-4614-8585-8_2
56. Lulsdorf M, Ferrie A, Slater SMH, Yuan HY (2014) Methods and role of embryo rescue technique in alien gene transfer. In: Alien Gene Transfer in Crop Plants. A Pratap, J Kumar (eds.) 1: 77–103. DOI: 10.1007/978-1-4614-8585-8_4
57. Machezynska J, Orlovska K, Mankowski DR et al. (2014) DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell Tissue Organ Cult. 119: 289–299. DOI: 10.1007/s11240-014-0533-1
58. Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed. 113: 125–129.
59. Mochida K, Tsujimoto H, Sasakuma T (2004) Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 47: 199–205.
60. Morshedi AR, Darvey NL (1995) High frequency of embryos in wheat × maize crosses. Sabrao J. 27: 17–22.
61. Mukai Y, Okamoto G, Kiryu S et al. (2015) The D-genome plays a critical role in the formation of haploid Aegilops tauschii through Imperata cylindrical mediated uniparental chromosome elimination. Nucleus 58 (3): 199–206.
62. Oleszczuk S, Sova S, Zimmy J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (× Triticosecale Wittmack) cv. Bogo. Plant Cell Reports 22: 885–893.
63. Oleszezuk S, Zimny J, Rabiza-Swider J, Lukaszewski AJ (2011) Aneuploidy among androgenic progeny of hexaploid triticale (× Triticosecale Wittmack). Plant Cell Rep. 30: 575–586. DOI: 10.1007/s00299-010-0971-0
64. Pickering RA (1983) The influence of genotype on doubled haploid barley production. Euphytica 32: 863–876.
65. Pickering RA, Morgan PW (1985) The influence of temperature on chromosome elimination during embryo development in cross involving Hordeum spp., wheat (Triticum aestivum L.) and rye. Theor. Appl. Genet. 70: 199–206.
66. Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through the chromosome elimination technique. Plant Breed. 124: 147–153.
67. Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 15: 339–345. DOI: 10.1007/s10681-006-9120-9
68. Rather SA (2012) Pollen viability of Imperata cylindrica under varied preservation regimes and interactive influence of the diverse genotypes on polyhaploid induction in bread wheat. Thesis CSK Hp Agricultural University 120 p.
69. Rather SA, Chaudhary HK, Kaila V (2014) Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res. Com. 42 (1): 19–26 DOI: 10.1556/CRC2013.0038
70. Rogalska SM, Mikulski W, Guedes Pinto H et al. (1996) Induction of haploid in triticale (× Triticosecale Wittm.) by crossing it with maize (Zea mays L.). Triticale: Today and Tomorrow 5: 379–382.
71. Sahijram S, Rao BM (2015) Embryo rescue in crop improvement. In: Plant Biology and Biotechnology. Bahadar et al. (eds.) 2: 363– 383. DOI: 10.1007/978-810322-2283-5_18
72. Sanie M, Pickering R, Kumke K et al. (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Nat. Acad. Sci. 108: 498–505.
73. Simpson E, Snape JW, Finch RA (1980) Variation between Hordeum bulbosum genotypes in their ability to produce haploids in barley (Hordeum vulgare L.). Z. Pflanzenzucht. 85: 205–211.
74. Sitch LA, Snape JW, Firman SJ (1985) Intra chromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor Appl Genet. 70: 309–314
75. Snape JW, Simpson E (1980) Crossability of wheat with Hordeum bulbosum. Ann. Rep. Plant Breed. Inst. 66 p.
76. Snape JW, Simpson E, Parker BB (1986) Criteria for the selection and use of doubled haploid systems in plant breeding. In: Genetic Manipulation in Plant Breeding. W Horn et al. (eds.) p. 217–229.
77. Sood S, Dwived S (2015) Doubled haploid platform: an accelerated breeding approach for crop improvement. In: Plant Biology and Biotechnology. Bahadar et al. (eds.) 2: 89–111. DOI: 10.1007/978-81-322-2283-5_5
78. Srivastava P, Singh NB (2018) Acceleration wheat breeding: doubled haploids and rapid generation advance. In: Biotechnologies of Crop Improvement. SS Gosal, SH Wani (eds.) 1: 437-461. DOI: 10.1007.978-3-319-78283-6_3
79. Suenaga K, Marschedi AR, Darvey NL (1997) Haploid production of Australian wheat (Triticum aestivum L.) cultivars through wheat × maize (Zea mays L.) crosses. Aust. J. Agr. Res. 48: 1207–1211.
80. Суриков И.М., Дунаева С.Е. Элиминация хромосом при отдаленной гибридизации в семействе злаков и ее использование для получения гаплоидов // Ж. общ. Биологии. 1989. T. 50. № 2. С. 158–170.
81. Symko S (1969) Haploid barley from crosses of Hordeum bulbosum (2x) by Hordeum vulgare (2x). Can. J. Genet. Cytol. 11: 602–608.
82. Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L.) by in vivo colchicines manipulation in Imperata cylindrica mediated chromosome elimination approach. Plant Breed. 131: 263–266.
83. Thőrn EC (1992) The influence of genotype and environment on seed and embryo development in barley (Hordeum vulgare L.) after crossing with Hordeum bulbosum L. Euphytica 59: 109–118.
84. Wedzony M, Marcinska I, Ponitka A et al. (1998) Production of doubled haploids in triticale (× Titicosecale Wittm.) by means of crosses with maize (Zea mays L.) using picloram and dicamba. Plant Breed. 117: 211–215.
85. Wędzony M, Góral H, Golemiec E (2001) Prospects for breaking genetic barriers in triticale doubled haploid production. Vortrage fur Pflanzenzuchtung 16: 34–39.
86. Wedzony M, Forster BP, Golemiec E et al. (2009) Progress in doubled haploid technology in higher plants. In: Advances in Haploid Production in Higher PlantsA. Touraev et al. (eds.) p. 1–31.
87. Wędzony M, Żur I, Krzewska M et al. (2015) Doubled haploids in triticale. In: Triticale. F Eudes (ed.) p. 111–128. DOI: 10.1007/978-3-319-22551-7_6
88. Weyen J (2009) Barley and wheat doubled haploids in breeding. In: Advances in Haploid Production in Higher Plants. A Touraev et al. (eds.) p. 179–186.
89. Zheng XH, Luo MS, Yen C, Yang JI (1992) Chromosome location a new crossability gene in common wheat. Wheat Inf. Serv. 25: 36–40.
90. Zenkteler M, Nitzsche W (1984) Wide hybridization experiments in cereals. Theor. Appl. Genet. 68: 311–315.
Рецензия
Для цитирования:
Дьячук Т.И., Акинина В.Н., Хомякова О.В., Калашникова Э.В. Отдаленная гибридизация как метод получения гаплоидных растений у злаков. Биотехнология и селекция растений. 2019;2(2):44-52. https://doi.org/10.30901/2658-6266-2019-2-44-52
For citation:
Djatchouk T.I., Akinina V.N., Khomyakova O.V., Кalashnikova E.V. Distant hybridization as a method of haploid production in cereals. Plant Biotechnology and Breeding. 2019;2(2):44-52. (In Russ.) https://doi.org/10.30901/2658-6266-2019-2-44-52