Регуляция биосинтеза флавоноидов у представителей трибы фасолиевые Phaseoleae DC
https://doi.org/10.30901/2658-6266-2021-3-o1
Аннотация
Флавоноиды играют важную роль в метаболизме растений. Многие из них проявляют антиоксидантную активность и являются пигментами, окрашивающими ткани растений в разнообразные цвета. Продукты питания, богатые флавоноидными соединениями, рассматривают в качестве функциональных компонентов здорового рациона. В настоящее время отмечается повышенный интерес к изучению генетических механизмов, лежащих в основе появления признаков окраски у растений. Пути биосинтеза флавоноидов находятся под контролем двух групп генов. Структурные гены кодируют ферменты биосинтеза, а регуляторные гены ‒ транскрипционные факторы, контролирующие экспрессию структурных генов. Транскрипционные факторы, относящиеся к семействам R2R3-Myb, bHLH-Myc и WDR, образуют комплекс MBW, который вовлечен в регуляцию экспрессии структурных генов биосинтеза флавоноидов. Механизмы регуляции биосинтеза антоцианов и проантоцианидинов комплексом MBW подробно описаны у модельного растительного объекта Arabidopsis thaliana L. В настоящем обзоре обобщены данные о регуляции биосинтеза фенольных пигментов и об особенностях их накопления в растительных тканях у основных представителей трибы Phaseoleae DC: сои Glycine max (L.) Merr., фасоли обыкновенной Phaseolus vulgaris L., адзуки Vigna angularis (Willd.) Ohwi & Ohashi и коровьего гороха V. unguiculata (L.) Walp. Обсуждаемые в данном обзоре виды являются наиболее важными бобовыми культурами во многих странах мира, играя ключевую роль в рационе питания миллионов людей. Идентификация и характеристика генов, контролирующих пути биосинтеза флавоноидов, являются необходимым условием для успешной селекции современных сортов с повышенной диетической ценностью. Выявление закономерностей накопления флавоноидов необходимо для решения проблемы расширения разнообразия растительной продукции.
Об авторах
Е. А. КрыловаРоссия
190000 Россия, г. Санкт-Петербург, ул. Б. Морская, 42, 44; Лаборатория постгеномных исследований, научный сотрудник
А. С. Михайлова
Россия
190000 Россия, г. Санкт-Петербург, ул. Б. Морская, 42, 44;
199034 Россия, г. Санкт-Петербург, Университетская наб., д. 7–9;
младший научный сотрудник
Список литературы
1. Аджиева В.Ф., Бабак О.Г., Шоева О.Ю., Кильчевский А.В., Хлесткина Е.К. Молекулярно-генетические механизмы формирования окраски плодов и семян растений. Вавиловский журнал генетики и селекции. 2015;19(5):561-573. DOI: 10.18699/VJ15.073
2. Agati G., Biricolti S., Guidi L., Ferrini F., Fini A., Tattini M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology. 2011;168(3):204-212. DOI: 10.1016/j.jplph.2010.07.016
3. Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Science. 2012;196:67-76. DOI: 10.1016/j.plantsci.2012.07.014
4. Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiology and Biochemistry. 2013;72:35-45. DOI: 10.1016/j.plaphy.2013.03.014
5. Aisyah S., Gruppen H., Andini S., Bettonvil M., Severing E., Vincken J.-P. Variation in accumulation of isoflavonoids in Phaseoleae seedlings elicited by Rhizopus. Food Chemistry. 2016;196:694-701. DOI: 10.1016/j.foodchem.2015.09.110
6. Anguraj Vadivel A.K., McDowell T., Renaud J.B., Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Communications Biology. 2021;4(1):356. DOI: 10.1038/s42003-021-01889-6
7. Aparicio-Fernandez X., Yousef G.G., Loarca-Pina G., De Mejia E., Lila M.A.. Characterization of polyphenolics in the seed coat of black Jamapa bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry. 2005;53(11):4615-4622. DOI: 10.1021/jf047802o
8. Barros J., Dixon R.A. Plant phenylalanine/tyrosine ammonia-lyases. Trends in Plant Science. 2020;25(1):66-79. DOI: 10.1016/j.tplants.2019.09.011
9. Baudry A., Heim M.A., Dubreucq B., Caboche M., Weisshaar B., Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal. 2004;39(3):366-380. DOI: 10.1111/j.1365-313X.2004.02138.x
10. Beninger C.W., Hosfield G.L. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry. 2003;51(27):7879-7883. DOI: 10.1021/jf0304324
11. Berli F.J., Moreno D., Piccoli P., Hespanhol-Viana L., Silva M.F., Bressan-Smith R., Cavagnaro J.B., Bottini R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) Cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell & Environment. 2009;33(1):1-10. DOI: 10.1111/j.1365-3040.2009.02044.x
12. Boukar O., Fatokun C.A., Roberts P.A., Abberton M., Huynh B.L., Close T.J., Kyei-Boahen S., Higgins T.J.V., Ehlers J.D. Cowpea. In: Grain Legumes. Antonio M. De Ron (ed.). New York: Springer; 2015. p.219-250. (HBPB; vol. 10). DOI: 10.1007/978-1-4939-2797-5
13. Braidot E., Zancani M., Petrussa E., Peresson C., Bertolini A., Patui S., Francesco M., Vianello A. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signaling & Behavior. 2008;3(9):626-632. DOI: 10.4161/psb.3.9.6686
14. Buer C.S., Imin N., Djordjevic M.A. Flavonoids: new roles for old molecules. Journal of Integrative Plant Biology. 2010;52(1):98-111. DOI: 10.1111/j.1744-7909.2010.00905.x
15. Burak M., Imen Y. Flavonoids and their antioxidant properties. Turkiye Klin Tip Bil Derg. 1999;19:296-304.
16. Бурляева М.О., Гуркина М.В., Чебукин П.А., Перчук И.Н., Мирошниченко Е.В. Новые сорта вигны (Vigna unguiculata subsp. sesquipedalis (L.) Verdc.) овощного использования, перспективные для возделывания в южных регионах России. Овощи России. 2019;(5):33-37. DOI: 10.18619/2072-9146-2019-5-33-37
17. Cardador-Martínez A., Loarca-Piña G., Oomah B.D. Antioxidant activity in common beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry. 2002;50(24):6975-6980. DOI: 10.1021/jf020296n
18. Chávez-Santoscoy R.A., Gutiérrez-Uribe J.A., Serna-Saldívar S.O. Effect of flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors. Plant Foods for Human Nutrition. 2013;68(4):416-423. DOI: 10.1007/s11130-013-0384-7
19. Cheynier V., Comte G., Davies K.M., Lattanzio V., Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry. 2013;72:1-20. DOI: 10.1016/j.plaphy.2013.05.009
20. Christie P.J., Alfenito M.R., Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta. 1994;194(4):541-549. DOI: 10.1007/BF00714468
21. Chu S., Wang J., Zhu Y., Liu S., Zhou X., Zhang H., Wang C.E., Yang W., Tian Z., Cheng H., Yu D. An R2R3-Type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLOS Genetics. 2017;13(5):e1006770. DOI: 10.1371/journal.pgen.1006770
22. Chu L., Zhao P., Huang X., Zhao B., Li Y., Yang K., Wan P. Genetic analysis of seed coat colour in adzuki bean (Vigna angularis L.). Plant Genetic Resources: Characterization and Utilization. 2021a;19(1):67-73. DOI: 10.1017/S1479262121000101
23. Chu L., Zhao P., Wang K., Zhao B., Li Y., Yang K., Wan P. VaSDC1 is involved in modulation of flavonoid metabolic pathways in black and red seed coats in adzuki bean (Vigna angularis L.). Frontiers in Plant Science. 2021b;12(July). DOI: 10.3389/fpls.2021.679892
24. De Mejı́a E.G., Castaño-Tostado E., Loarca-Piña G. Antimutagenic effects of natural phenolic compounds in beans. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 1999;441(1):1-9. DOI: 10.1016/S1383-5718(99)00040-6
25. Delph L.F., Lively C.M. The evolution of floral color change: pollinator attraction versus physiological constraints in fuchsia excorticata. Evolution. 1989;43(6):1252. DOI: 10.2307/2409360
26. Du H., Yang S.S., Liang Z., Feng B.R., Liu L., Huang Y.B., Tang Y.X. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12(1):106. DOI: 10.1186/1471-2229-12-106
27. Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis. 2010;15(10):573-581. DOI: 10.1016/j.tplants.2010.06.005
28. Espinosa-Alonso L.G., Lygin A., Widholm J.M., Valverde M.E., Paredes-Lopez O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry. 2006;54(12):4436-4444. DOI: 10.1021/jf060185e
29. Fritz K.L., Seppanen C.M., Kurzer M.S., Csallany A.S. The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutrition Research. 2003;23(4):479-487. DOI: 10.1016/S0271-5317(03)00005-8
30. Gonzalez A., Zhao M., Leavitt J.M., Lloyd A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/BHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal. 2008;53(5):814-827. DOI: 10.1111/j.1365-313X.2007.03373.x
31. Gordeeva E., Shamanin V., Shoeva O., Kukoeva T., Morgounov A., Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia Agronomy 2020; 10(10):1603. DOI: 10.3390/agronomy10101603
32. Gordeeva E.I., Shoeva O.Y., Khlestkina E.K. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica. 2015;203(2):469-476. DOI: 10.1007/s10681-014-1317-8
33. Guzmán-Maldonado H., Castellanos J., De Mejía E.G. Relationship between theoretical and experimentally detected tannin content of common beans (Phaseolus vulgaris L.). Food Chemistry. 1996;55(4):333-335. DOI: 10.1016/0308-8146(95)00106-9
34. Harland S.C. Inheritance of certain characters in the cowpea (Vigna sinensis). Journal of Genetics. 1919;8(2):101–132. DOI: 10.1007/BF02983490
35. Harland S.C. Inheritance of certain characters in the cowpea (Vigna sinensis). II. Journal of Genetics. 1920;10(3):193-205. DOI: 10.1007/BF03007981
36. Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics. 2002;96(2-3):67-202. DOI: 10.1016/S0163-7258(02)00298-X
37. Herniter I.A., Muñoz-Amatriaín M., Lo S., Guo Y-N., Close T.J. Identification of candidate genes controlling black seed coat and pod tip color in cowpea (Vigna unguiculata [L.] Walp). G3: Genes, Genomes, Genetics. 2018;8(10):3347-3355. DOI: 10.1534/g3.118.200521
38. Herniter I.A., Lo R., Muñoz-Amatriaín M., Lo S., Guo Y-N, Huynh B-L., Lucas M., Roberts P.A., Lonardi S., Close T.J. Seed coat pattern QTL and development in cowpea (Vigna unguiculata [L.] Walp.). Frontiers in Plant Science. 2019;10:1-12. DOI: 10.3389/fpls.2019.01346
39. Hungria M., Joseph C.M., Phillips D.A. Anthocyanidins and flavonols, major Nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiology. 1991;97(2):751-758. DOI: 10.1104/pp.97.2.751
40. Ishikura N., Iwata M., Miyazaki S. Flavonoids of some Vigna-plants in leguminosae. The Botanical Magazine Tokyo. 1981;94(3):197-205. DOI: 10.1007/BF02488610
41. Jin H. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal. 2000;19(22):6150-6161. DOI: 10.1093/emboj/19.22.6150
42. Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science. 2013;18(9):477-483. DOI: 10.1016/j.tplants.2013.06.003
43. Jiang N., Doseff A., Grotewold E. Flavones: from biosynthesis to health benefits. Plants. 2016;5(2):27. DOI: 10.3390/plants5020027
44. Jun S.-Y., Sattler S.A., Cortez G.S., Vermerris W., Sattler S.E., Kang C. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase. Plant Physiology. 2018;176(2):1452-1468. DOI: 10.1104/pp.17.01608
45. Kalavacharla V., Liu Z., Meyers B.C., Thimmapuram J., Melmaiee K. Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC Plant Biology. 2011;11(1):135. DOI: 10.1186/1471-2229-11-135
46. Kang Y. J., Kim S. K., Kim M. Y., Lestari P., Kim K. H., Ha B. K., Jun T. H., Hwang W. J., Lee T., Lee J., Shim S., Yoon M. Y., Jang Y. E., Han K. S., Taeprayoon P., Yoon N., Somta P., Tanya P., Kim K. S., Gwag J. G., Moon J. K., Lee Y. H., Park B. S., Bombarely A., Doyle J. J., Jackson S. A., Schafleitner R., Srinives P., Varshney R. K., Lee S. H. Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications. 2014;11(5):5443. DOI: 10.1038/ncomms6443
47. Katiyar A., Smita S., Lenka S., Rajwanshi R., Chinnusamy V., Bansal K. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics. 2012;13(1):544. DOI: 10.1186/1471-2164-13-544
48. Kitamura S. Transport of flavonoids: from cytosolic synthesis to vacuolar accumulation. In: The Science of Flavonoids. New York: Springer; 2006. p.123-146. DOI: 10.1007/978-0-387-28822-2_5
49. Kleindt C.K., Stracke R., Mehrtens F., Weisshaar B. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway. BMC Research Notes. 2010;3(1):255. DOI: 10.1186/1756-0500-3-255
50. Koes R., Verweij W., Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science. 2005;10(5):236–242. DOI: 10.1016/j.tplants.2005.03.002
51. Korkina L.G., Afanas’Ev I.B. Antioxidant and chelating properties of flavonoids. 1996;38:151-163. DOI: 10.1016/S1054-3589(08)60983-7
52. Kumar V., Suman U., Rubal, Kumar S.Y. Flavonoid secondary metabolite: biosynthesis and role in growth and development in plants. In: Recent Trends and Techniques in Plant Metabolic Engineering. Singapore: Springer Singapore; 2018 p.19-45. DOI: 10.1007/978-981-13-2251-8_2
53. Lattanzio V., Cardinali A., Linsalata V., Perrino P., Ng N.Q. A chemosystematic study of the flavonoids of Vigna. Genetic Resources and Crop Evolution. 1996;43(6):493-504. DOI: 10.1007/BF00138826
54. Lea U.S., Slimestad R., Smedvig P., Lillo C. Nitrogen deficiency enhances expression of specific MYB and BHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta. 2007;225(5):1245-1253. DOI: 10.1007/s00425-006-0414-x
55. Lepiniec L., Debeaujon I., Routaboul J-M., Baudry A., Pourcel L., Nesi N., Caboche M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology. 2006;57(1):405-430. DOI: 10.1146/annurev.arplant.57.032905.105252
56. Li S. Transcriptional control of flavonoid biosynthesis. Plant Signaling & Behavior. 2014;9 (1):e27522. DOI: 10.4161/psb.27522
57. Li S., Bashline L., Lei L., Gu Y. Cellulose synthesis and its regulation. The Arabidopsis Book. 2014;12:e0169. DOI: 10.1199/tab.0169
58. Li Y., Chen Q., Xie X., Cai Y., Li J., Feng Y., Zhang Y. Integrated metabolomics and transcriptomics analyses reveal the molecular mechanisms underlying the accumulation of anthocyanins and other flavonoids in cowpea pod (Vigna unguiculata L.). Journal of Agricultural and Food Chemistry. 2020;68(34):9260-9275. DOI: 10.1021/acs.jafc.0c01851
59. Li Z., Su Q., Xu M., You J., Khan A.Q., Li J., Zhang X., Tu L., You C. Phenylpropanoid metabolism and pigmentation show divergent patterns between brown color and green color cottons as revealed by metabolic and gene expression analyses. Journal of Cotton Research. 2020;3(1):27. DOI: 10.1186/s42397-020-00069-x
60. Liu R., Zheng Y., Cai Z., Xu B. Saponins and flavonoids from adzuki bean (Vigna angularis L.) ameliorate high-fat diet-induced obesity in ICR mice. Frontiers in Pharmacology. 2017;8:1-8. DOI: 10.3389/fphar.2017.00687
61. Lloyd A., Brockman A., Aguirre L., Campbell A., Bean A., Cantero A., Gonzalez A. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology. 2017;58(9):1431-1441. DOI: 10.1093/pcp/pcx075
62. Lo S., Muñoz-Amatriaín M., Boukar O., Herniter I., Cisse N., Guo Y-N., Roberts P.A., Xu S., Fatokun C., Close T.J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports. 2018;8(1):6261. DOI: 10.1038/s41598-018-24349-4
63. Lonardi S., Muñoz-Amatriaín M., Liang Q., Shu S., Wanamaker S.I., Lo S., Tanskanen J., Schulman A.H., Zhu T., Luo M.C., Alhakami H., Ounit R., Hasan A.Md., Verdier J., Roberts P.A., Santos J.R.P., Ndeve A., Dolezel J., Vrana J., Hokin S.A., Farmer A.D., Cannon S.B., Close T.J. The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant Journal. 2019;98(5):767-782. DOI: 10.1111/tpj.14349
64. Madhujith T., Naczk M., Shahidi F. Antioxidant activity of common beans (Phaseolus vulgaris L.). Journal of Food Lipids. 2004;11(3):220-233. DOI: 10.1111/j.1745-4522.2004.01134.x
65. Makoi J.H.J.R., Belane A.K., Chimphango S.B.M., Dakora F.D. Seed flavonoids and anthocyanins as markers of enhanced plant defence in nodulated cowpea (Vigna unguiculata L. Walp.). Field Crops Research. 2010;118(1):21-27. DOI: 10.1016/j.fcr.2010.03.012
66. McClean P.E., Bett K.E., Stonehouse R., Lee R., Pflieger S., Moghaddam S.M., Geffroy V., Miklas P., Mamidi S. White seed color in common bean (Phaseolus vulgaris L.) results from convergent evolution in the P (Pigment) gene. New Phytologist. 2018;219 (3):1112-1123. DOI: 10.1111/nph.15259
67. Медведев С.С. Физиология растений. Санкт-Петербург: БХВ-Петербург; 2012.
68. Moy P., Qutob D., Chapman B.P., Atkinson I., Gijzen M. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Molecular Plant-Microbe Interactions. 2004;17(10):1051-1062. DOI: 10.1094/MPMI.2004.17.10.1051
69. Muñoz-Amatriaín M., Mirebrahim H., Xu P., Wanamaker S.I., Cheng L.M., Alhakami H., Alpert M., Atokple I., Batieno B.J., Boukar O., Bozdag S., Cisse N., Drabo I., Ehlers J.D., Farmer A., Fatokun C., Gu Y.Q., Guo Y.N., Huynh B.L., Jackson S.A., Kusi F., Lawley C.T., Lucas M.R., Ma Y., Timko M.P., Wu J., You F., Barkley N.A., Roberts P.A., Lonardi S., Close T.J. Genome resources for climate-resilient cowpea, an essential crop for food security. The Plant Journal. 2017;89(5):1042-1054. DOI: 10.1111/tpj.13404
70. Nassourou M.A., Njintang Y.N., Noubissié T.J-B., Nguimbou R.M., Bell J.M. Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L. Walp.). The Crop Journal. 2016;4(5):391-397. DOI: 10.1016/j.cj.2016.05.011
71. Nesi N., Debeaujon I., Jond C., Pelletier G., Caboche M., Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell. 2000;12(10):1863-1878. DOI: 10.1105/tpc.12.10.1863
72. Nesi N., Jond C., Debeaujon I., Caboche M., Lepiniec L. The Arabidopsis TT2 gene encodes and R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell. 2001;13(9):2099. DOI: 10.2307/3871430
73. Ndakidemi P.A., Dakora F.D. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Functional Plant Biology. 2003;30(7):729. DOI: 10.1071/FP03042
74. Ohnishi T., Takahashi A., Takeda K. Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Mutation Research/Environmental Mutagenesis and Related Subjects. 1992;272(3):277. DOI: 10.1016/0165-1161(92)91606-R
75. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview. Journal of Nutritional Science. 2016;(5):e47. DOI: 10.1017/jns.2016.41
76. Perchuk I., Shelenga T., Gurkina M., Miroshnichenko E., Burlyaeva M. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020;25(17):3778. DOI: 10.3390/molecules25173778
77. Park J-S., Kim J-B., Cho K-J., Cheon C-I., Sung M-K., Choung M-G., Roh K-H. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Reports. 2008;27(6):985-994. DOI: 10.1007/s00299-008-0521-1
78. Petroni K., Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science. 2011;181(3):219-229. DOI: 10.1016/j.plantsci.2011.05.009
79. Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant flavonoids ‒ biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences. 2013;14(7):14950-14973. DOI: 10.3390/ijms140714950
80. Pollastri S., Tattini M. Flavonols: old compounds for old roles. Annals of Botany. 2011;108(7):1225-1233. DOI: 10.1093/aob/mcr234
81. Prakken R. Inheritance of colour in Phaseolus vulgaris L. II. A critical review. Wageningen Mededelingen van de Landbouwhogeschool te Wageningen. 1970;70:1-38.
82. Qi T., Song S., Ren Q., Wu D., Huang H., Chen Y., Fan M., Peng W., Ren C., Xie D. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell. 2011;23(5):1795-1814. DOI: 10.1105/tpc.111.083261
83. Romani A., Vignolini P., Galardi C., Mulinacci N., Benedettelli S., Heimler D. Germplasm characterization of Zolfino landraces (Phaseolus vulgaris L.) by flavonoid content. Journal of Agricultural and Food Chemistry. 2004;52(12):3838-3842. DOI: 10.1021/jf0307402
84. Ryan K.G., Swinny E.E., Markham K.R., Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry. 2002;59(1):23-32. DOI: 10.1016/S0031-9422(01)00404-6
85. Saigo T., Wang T., Watanabe M., Tohge T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology. 2020;55:93-99. DOI: 10.1016/j.pbi.2020.04.001
86. Saito K., Yonekura-Sakakibara K., Nakabayashi R., Higashi Y., Yamazaki M., Tohge T., Fernie A.R. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry. 2013;72:21-34. DOI: 10.1016/j.plaphy.2013.02.001
87. Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., Xu D., Hellsten U., May G.D., Yu Y., Sakurai T., Umezawa T., Bhattacharyya M. K., Sandhu D., Valliyodan B., Lindquist E., Peto M., Grant D., Shu S., Goodstein D., Barry K., Futrell-Griggs M., Abernathy B., Du J., Tian Z., Zhu L., Gill N., Joshi T., Libault M., Sethuraman A., Zhang X.-C., Shinozaki K., Nguyen H.T., Wing R.A., Cregan P., Specht J., Grimwood J., Rokhsar D., Stacey G., Shoemaker R.C., Jackson S.A. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178-183. DOI: 10.1038/nature08670
88. Schmutz J., McClean P.E., Mamidi S., Wu G.A., Cannon S.B., Grimwood J., Jenkins J., Shu S., Song Q., Chavarro C., Torres-Torres M., Geffroy V., Moghaddam S.M., Gao D., Abernathy B., Barry K., Blair M., Brick M.A., Chovatia M., Gepts P., Goodstein D. M., Gonzales M., Hellsten U., Hyten D.L., Jia G., Kelly J.D., Kudrna D., Lee R., Richard M. M.S., Miklas P.N., Osorno J.N., Rodrigues J., Thareau V., Urrea C.A., Wang M., Yu Y., Zhang M., Wing R.A., Cregan P.B., Rokhsar D.S., Jackson S.A. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics. 2014;46(7):707-713. DOI: 10.1038/ng.3008
89. Shirley B.W. Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Science Research. 1998;8(4):415-422. DOI: 10.1017/S0960258500004372
90. Smith F.L. A genetic analysis of red seed-coat color in Phaseolus vulgaris. Hilgardia. 1939;12(9):551-621. DOI: 10.3733/hilg.v12n09p551
91. Spillman W.J. Inheritance of the 'Eye' in Vigna. American naturalist. 1911;45(537):513-523
92. Stanton W.R., Francis B.J. Ecological significance of anthocyanins in the seed coats of the Phaseoleae. Nature. 1966;211(5052):970-971. DOI: 10.1038/211970a0
93. Stracke R., Ishihara H., Huep G., Barsch A., Mehrtens F., Niehaus K., Weisshaar B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal. 2007;50(4):660-677. DOI: 10.1111/j.1365-313X.2007.03078.x
94. Takahashi A., Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station. Biological Sciences in Space. 2004;18(4):255-260. DOI: 10.2187/bss.18.255
95. Takahashi A., Ichihara Y., Isagi Y., Shimada T. Effects of acorn tannin content on infection by the fungus Ciboria batschiana. Forest Pathology. 2010;40(2):96-99. DOI: 10.1111/j.1439-0329.2009.00612.x
96. Varshney R.K., Chen W., Li Y., Bharti A.K., Saxena R.K., Schlueter J.A., Donoghue M.T., Azam S., Fan G., Whaley A.M., Farmer A.D., Sheridan J., Iwata A., Tuteja R., Penmetsa R.V., Wu W., Upadhyaya H.D., Yang S-P., Shah T., Saxena K.B., Michael T., McCombie W.R., Yang B., Zhang G., Yang H., Wang J., Spillane C., Cook D.R., May G.D., Xu X,.Jackson S.A. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology. 2012;30(1):83-89. DOI: 10.1038/nbt.2022
97. Vasconcelos E.V., de Andrade Fonsêca A.F., Pedrosa-Harand A., de Andrade Bortoleti K.C., Benko-Iseppon A.M., da Costa A.F., Brasileiro-Vidal A.C. Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosome Research. 2015;23(2):253-266. DOI: 10.1007/s10577-014-9464-2
98. Вишнякова М.А., Александрова Т.Г., Буравцева Т.В., Бурляева М.О., Егорова Г.П., Семенова Е.В., Сеферова И.В., Суворова Г.Н. Видовое разнообразие коллекции генетических ресурсов зернобобовых ВИР и его использование в отечественной селекции. Труды по прикладной ботанике, генетике и селекции. 2019;180(2):109-123. DOI: 10.30901/2227-8834-2019-2-109-123
99. Walker A.R, Davison P.A., Bolognesi-Winfield A.C., James C.M., Srinivasan N., Blundell T.L., Esch J.J., Marks M.D., Gray J.C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell. 1999;11(7):1337-1349. DOI: 10.1105/tpc.11.7.1337
100. Williams R.J., Spencer J.P.E., Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radical Biology and Medicine. 2004;36(7):838-849. DOI: 10.1016/j.freeradbiomed.2004.01.001
101. Xu W., Dubos C., Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science. 2015;20(3):176-185. DOI: 10.1016/j.tplants.2014.12.001
102. Yang C., Yan J., Jiang S., Li X., Min H., Wang X., Hao D. Resequencing 250 soybean accessions: new insights into genes associated with agronomic traits and genetic networks. Genomics, Proteomics & Bioinformatics. 2021; 24:S1672-0229(21)00160-1. DOI: 10.1016/j.gpb.2021.02.009
103. Yi J., Derynck M.R., Chen L., Dhaubhadel S. Differential expression of CHS7 and CHS8 genes in soybean. Planta. 2010a;231(3):741-753. DOI: 10.1007/s00425-009-1079-z
104. Yi J., Derynck M.R., Li X., Telmer P., Marsolais F., Dhaubhadel S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. The Plant Journal. 2010b;62(6):1019-1034. DOI: 10.1111/j.1365-313X.2010.04214.x
105. Zhang L., Xu B., Wu T., Yang Y., Fan L., Wen M., Sui J. Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genes in anthocyanin biosynthetic pathway. BMC Genomics. 2017;18(1):288. DOI: 10.1186/s12864-017-3677-7
106. Zhu H-F., Fitzsimmons K., Khandelwal A., Kranz R.G. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant. 2009;2(4):790-802. DOI: 10.1093/mp/ssp030
Рецензия
Для цитирования:
Крылова Е.А., Михайлова А.С. Регуляция биосинтеза флавоноидов у представителей трибы фасолиевые Phaseoleae DC. Биотехнология и селекция растений. 2021;4(3):15-25. https://doi.org/10.30901/2658-6266-2021-3-o1
For citation:
Krylova E.A., Mikhailova A.S. Regulation of flavonoid biosynthesis in representatives of the tribe Phaseoleae DC. Plant Biotechnology and Breeding. 2021;4(3):15-25. (In Russ.) https://doi.org/10.30901/2658-6266-2021-3-o1