Preview

Plant Biotechnology and Breeding

Advanced search

Identification of leaf rust resistance genes in the new Russian varieties of common wheat

https://doi.org/10.30901/2658-6266-2021-2-o2

Abstract

Background. Wheat leaf rust caused by Puccinia triticina Erikss. is a significant wheat disease in all regions of the Russian Federation. The genetic diversity of the cultivated wheat varieties regarding the type of resistance and genes that control it ensures reliable protection of this crop against the pathogen. The aim of this work was to characterize the diversity of new Russian varieties of winter and spring common wheat for leaf rust resistance genes (Lr-genes).

Materials and Methods. The research material was represented by 43 varieties of winter and 25 of spring wheat included in the State Register of Selection Achievements of the Russian Federation in 2018-2020.

Results. Using molecular markers, 18 Lr genes were identified: Lr1, Lr3, Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, Lr25, Lr26, Lr28, Lr29, Lr34, Lr35, Lr37, Lr41 (39), Lr47 and Lr66. A phytopathological test was used to clarify the results of molecular analysis. Ninety-three percent of the studied wheat varieties were found to contain Lr genes, either separately or in combinations. These were the highly and partially effective genes Lr24, Lr9, and Lr19, adult plant resistance genes Lr34 and Lr37, and ineffective genes Lr1, Lr3, Lr10, Lr20, and Lr26. The Lr24 gene has been identified for the first time in Russian varieties. The spring variety ‘Leader 80’, harboring this gene, is recommended for cultivation in the West Siberian and East Siberian regions. An effective combination of Lr9 + Lr26 genes, individually overcome by the pathogen, was determined in the spring cultivar ‘Silach’, highly resistant to leaf rust. The Lr9 gene was found in the winter variety ‘Gerda’, which is recommended for cultivation in the North Caucasus region. Previously, the varieties with Lr9 were not grown in the North Caucasus. An increase in the number of leaf rust resistant accessions protected by the effective adult plant resistance gene Lr37 is noted among wheat varieties undergoing regional adaptation testing. Many of the identified Lr genes (Lr19, Lr24, Lr26, Lr34, Lr37) are linked with effective Sr genes (Sr25, Sr24, Sr31, Sr57, and Sr38), which additionally ensures stable genetic protection of wheat against stem rust.

Conclusions. The obtained information about representation of Lr genes in wheat varieties should be used in regional breeding programs. A timely replacement of genetically protected varieties allows stabilizing the populational composition of the phytopathogen and reducing the likelihood of epiphytotics.

About the Authors

E. I. Gultyaeva
All-Russian Institute of Plant Protection
Russian Federation

3 Podbelskogo Street, St. Petersburg, Pushkin, 196608 Russia



E. L. Shaydayuk
All-Russian Institute of Plant Protection
Russian Federation

3 Podbelskogo Street, St. Petersburg, Pushkin, 196608 Russia



References

1. Agapova V.D., Vaganova O.F., Volkova G.V. The efficiency of juvenile genes of orange leaf rust resistance of winter wheat during the germinal phase in the climate of the Russian South. International Research Journal. 2020;8(98):163-167. [in Russian] DOI: 10.23670/IRJ.2020.98.8.023

2. Atia M.A.M., El-Khateeb E.A., Abd El-Maksoud R.M., Abou-Zeid M.A., Salah A., Abdel-Hamid A.M.E. Mining of leaf rust resistance genes content in Egyptian bread wheat collection. Plants. 2021;10(7);1378. DOI: 10.3390/plants10071378

3. Brown-Guedira G., Sing S. Leaf Rust Resistance Gene Lr39. MasWheat. Marker Assisted Selection in Wheat. 2019. Available from: https://maswheat.ucdavis.edu/protocols/Lr39 [accessed on 10 May 2021].

4. Chelkowski J., Golka L., Stepien L. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. Journal of Applied Genetics. 2003;44:323-338.

5. Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica. 2005;143:19-26. DOI: 10.1007/s10681-005-1680-6

6. Dakouri A., McCallum B.D., Radovanovic N., Cloutier S. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Molecular Breeding. 2013;32:663-677. DOI: 10.1007/s11032-013-9899-8

7. Dorokhov D.B., Kloke E. A rapid and economical technology of RAPD analysis of plant genomes. Russian Journal of Genetics. 1997;33(4):358-365. [in Russian]

8. Dyakov Yu.T. Population biology of phytopathogenic fungi (Populyatsionnaya biologiya fitopatogennykh gribov). Moscow: “Muraveyˮ Publishing House; 1998. [in Russian]

9. Fritz A. Leaf Rust Resistance Gene Lr21. Marker Assisted Selection in Wheat (MasWheat). 2019. Available from: http://maswheat.ucdavis.edu/protocols/Lr21 [accessed on 10 May 2021].

10. Gregáňová Ž., Kraic J., Gálová Z. Diagnostic of wheat leaf rust resistance genes by DNA markers and their application in MAS. Czech Journal of Genetics and Plant Breeding. 2003;39:127-129. DOI: 10.17221/3730-CJGPB

11. Gultyaeva E.I. Methods for identification of wheat leaf rust resistance genes using DNA markers and characterization of the efficiency of Lr genes (Metody identifikatsii genov ustoychivosti pshenitsy k buroy rzhavchine s ispolzovaniyem DNK-markerov i kharakteristiki effektivnosti Lr-genov). St. Petersburg; 2012. [in Russian]

12. Gultyaeva E.I., Baranova О.А., Dmitriev А.P.V Virulence and population structure of Puccinia triticina in Russian Federation in 2007. Plant Protection News. 2009;4:33-38. [in Russian]

13. Gultyaeva E.I., Sadovaya A.S. Breeding of common wheat for resistance to brown rust of wheat in Russia. Plant Protection and Quarantine. 2014;10:24-26. [in Russian]

14. Gultyaeva E.I., Shaydayuk E.L., Gannibal Ph.B. Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture. 2021;11(4):319. DOI: 10.3390/agriculture11040319

15. Gultyaeva E.I., Shaydayuk E.L., Kosman E.G. Regional and temporal differentiation of virulence phenotypes of Puccinia triticina from common wheat in Russia during the period 2001-2018. Plant Pathology. 2020;69(5):860-871. DOI: 10.1111/ppa.13174

16. Gupta S.K., Charpe A., Koul S., Prabhu K.V., Haq Q.M.R. Affiliations expand development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome. 2005;48(5):823-830. DOI: 10.1139/g05-051

17. Gupta S.K., Charpe A., Prabhu K.W., Haque O.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theoretical and Applied Genetics. 2006;113(6):1027-1036. DOI: 10.1007/s00122-006-0362-7

18. Halpin C. Gene stacking in transgenic plants – the challenge for 21st century plant biotechnology. Plant Biotechnology Journal. 2005;3:141-155. doi: 10.1111/j.1467-7652.2004.00113.x

19. Helguera M., Khan I.A., Dubcovsky J. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theoretical and Applied Genetics. 2000;101: 625-631. DOI: 10.1007/s001220051524

20. Helguera M., Khan I.A., Kolmer J., Lijavetzky D., Zhong-qi L., Dubcovsky J. PCR assays for the Lr37–Yr17–Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science. 2003;43(5):1839-1847. DOI: 10.2135/cropsci2003.1839

21. Herrera-Foessel S., Singh R.P., Huerta-Espino J., William M., Rosewarne G., Djurle A., Yuen J. Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Science. 2007;47(4):1459-1466. DOI: 10.2135/cropsci2006.10.0663

22. Lagudah E.S., McFadden H., Singh R.P., Huerta-Espino J. Bariana H.S., Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics. 2006;114:21-30. DOI: 10.1007/s00122-006-0406-z

23. Mago R., Bariana H.S., Dundas I.S. Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics. 2005;111(3):496-504. DOI: 10.1007/s00122-005-2039-z

24. Mago R., Zhang P., Bariana H.S., Verlin U.K., Ellis J.G., Dundas I.S. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theoretical and Applied Genetics. 2009;119(8):1441-50. DOI: 10.1007/s00122-009-1146-7.

25. Marais G.F., Bekker T.A., Eksteen A., McCallum B., Fetch T., Marais A.S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica 2010;171(1):71-85. DOI: 10.1007/s10681-009-9996-2

26. McCallum B.D., Hiebert C.W., Cloutier S., Bakkeren G., Rosa S.B., Humphreys D.G., Marais J.F., McCartney C.A., Panwar V., Rampitsch C., Saville B.J., Wang X. A review of wheat leaf rust research and the development of resistant cultivars in Canada. Canadian Journal of Plant Pathology. 2016;38(1):1-18. DOI: 10.1080/07060661.2016.1145598

27. McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Сatalogue of gene symbols for wheat: 2020 supplement. Annual Wheat Newsletter. 2020;66:109-128. Available from: https://wheat.pw.usda.gov/ggpages/awn/66/AWNVOL66.pdf [accessed on 11 May 2021].

28. McIntosh R.A., Wellings C.R., Park R.F. Wheat rusts: An atlas of resistance genes. Australia: CSIRO; 1995. DOI: 10.1071/9780643101463

29. Meshkova L.V., Rosseeva L.P., Korenyuk E.A., Belan I.A. Dynamics of distribution of the wheat leaf rust pathotypes virulent to the cultivars with Lr9 gene in Omsk region. Mycology and Phytopathology. 2012;46:397-400. [in Russian]

30. Morgounov A., Ablova L., Babayants O., Babayants L., Bespalova L., Khudokormova Zh., Litvinenko N., Shamanin V., Syukov V. Genetic protection of wheat rusts and development of resistant varieties in Russia and Ukraine. Euphytica. 2011;179(2):297-311. DOI: 10.1007/s10681-010-0326-5

31. Neu C., Stein N., Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome. 2002;45(4):737-744. DOI: 10.1139/g02-040

32. Pestsova E., Ganal M.W., Röder M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 2000;43(4):689-697. DOI: 10.1139/g00-042

33. Plotnikova L.Ya., Shtubey T.Yu. Effectiveness of the wheat Lr22b, Lr34, and Lr37 genes for adult plant resistance to leaf rust in west Siberia and the cytophysiological basis of their action. Vavilov Journal of Genetics and Breeding. 2012;16(1):123-131. [in Russian] DOI: 10.1134/S2079059713010115

34. Procunier J.D., Townley-Smith T.F., Fox S., Prashar S., Gray M., Kim W.K., Czarnecki E., Dyck P.L. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). Journal of Genetics and Breeding. 1995;49:87-92.

35. Qiu J.W., Schürch A.C., Yahiaoui N., Dong L.L., Fan H.J., Zhang Z.J., Keller B., Ling H.Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theoretical and Applied Genetics. 2007;115:159-168. DOI: 10.1007/s00122-007-0551-z

36. Sanin S.S. Epiphytotics of cereal crop diseases: theory and practice: selected works (Epifitotii boleznej zernovyh kultur: teoriya i praktika: izbrannye trudy). Moscow; 2012. [in Russian]

37. Schachermayr G., Feuillet C., Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding. 1997;3:65-74.

38. Serfling A., Krämer I., Lind V., Schliephake E., Ordon F. Diagnostic value of molecular markers for Lr genes and characterization of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance. European Journal of Plant Pathology. 2011;130:559-575. DOI: 10.1007/s10658-011-9778-2

39. Servin B., Martin O.C.; Mézard M., Hospital F. Toward a theory of marker-assisted gene pyramiding. Genetics. 2004:68(1):513-523. doi: 10.1534/genetics.103.023358.

40. Seyfarth R., Feuillt C., Shachermayr G., Messmer M., Winzeler M., Keller B. Molecular mapping of the adult plant leaf rust resistance gene Lr13 in wheat (Triticum aestivum L.). Journal of Genetics and Breeding. 2000;54(3):193-198.

41. Sibikeev S.N., Druzhin A.E., Badaeva E.D., Shishkina A.A., Dragovich A.Y., Gultyaeva E.I., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russian Journal of Genetics. 2017;53(3):314-324. [in Russian] DOI: 10.7868/S0016675817030110

42. Sibikeev S.N., Krupnov V.A. Evolution of leaf rust and protection from it in the Volga region. The Bulletin of Saratov State Agrarian University in honor of N.I. Vavilov. 2007;(Special edition):92-94. [in Russian]

43. Sibikeev S.N., Markelova T.S., Druzhin A.E., Vedeneeva M.L., Singkh D. Evaluation of a set of introgressive spring bread wheat lines developed for resistance to stem rust race ug99 + Sr24 (TTKST) at the Agricultural Research Institute for the Southeast Region. Russian Agricultural Sciences. 2011;37(2):95-97. [in Russian]

44. Singh S.K., Sahoo J.P., Swain E. A review on gene stacking in crop plant. Journal of Pharmacognosy and Phytochemistry. 2018;7(4):1862-1865.

45. Singh R.P., Trethowan R. Breeding spring bread wheat for irrigated and rainfed production systems of developing world. In: Kang M., Priyadarshan P.M. (eds). Breeding major food staples. Ames (Iowa): Blackwell; 2007. p.109-140.

46. Sochalova L.P., Likhenko I.E. Evaluation of resistance to brown rust of Lr-lines and varieties of wheat, isogenic in genes, under conditions of Novosibirsk region. Dostizheniya nauki i tekhniki APK = Achievements of science and technology of AIC. 2016;30(3):46-50. [in Russian]

47. State Register for Selection Achievements Admitted for Usage (National List). Vol.1 "Plant varieties" (official publication). Moscow: FGBNU "Rosinformagrotekh"; 2021. [in Russian] URL : https://gossortrf.ru/gosreestr/ [дата обращения: 10.05.2021]

48. Taverniers I., Papazova N., Bertheau Y., De Loose M., Holst-Jensen A. Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environmental Biosafety Research. EDP Sciences. 2008;7(4):197-218. DOI: 10.1051/ebr:2008018

49. Tomkowiak A., Skowrońska R., Buda A., Kurasiak-Popowska D., Nawracała J., Kowalczewski L., Pluta M., Radzikowska D. Identification of leaf rust resistance genes in selected wheat cultivars and development of multiplex PCR. Open Life Sciences. 2019;14(1):327-334. DOI: 10.1515/biol-2019-0036

50. Tyryshkin L.G., Kurbanova P.M. Possibility of using molecular markers F1.2245, GWM630, XGWM130 and XBARC352 to identify genes for resistance of common wheat to leaf rust (Vozmozhnost ispolzovaniya molekulyarnykh markerov F1.2245, GWM630, XGWM130 I XBARC352 dlya identifikatsii genov ustoychivosti myagkoy pshenitsy k listovoy rzhavchine). Izvestiya Sankt-Peterburgskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of the St. Petersburg State Agrarian University. 2009;15:34-38. [in Russian]

51. Vida G., Gál M., Uhrin A., Veisz O., Hasan Syed N., Flavell A.J., Wang Z., Bedò Z. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica. 2009;170(1-2):67-76. DOI: 10.1007/s10681-009-9945-0

52. Weng Y., Azhaguvel P., Devkota R.N., Rudd J.C. PCR based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breeding. 2007;126(5):482-486. DOI: 10.1111/j.1439-0523.2007.01331.x

53. Zhemchuzhina A., Kurkova N. Structure of population of Puccinia triticina in various regions of Russia in 2006-2008. 8th International Wheat Conference: Abstracts of oral and poster presentations; 2010 June 01-04; St. Petersburg, Russia. St. Petersburg: VIR; 2010. p.279.


Review

For citations:


Gultyaeva E.I., Shaydayuk E.L. Identification of leaf rust resistance genes in the new Russian varieties of common wheat. Plant Biotechnology and Breeding. 2021;4(2):15-27. (In Russ.) https://doi.org/10.30901/2658-6266-2021-2-o2

Views: 771


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)