Preview

Plant Biotechnology and Breeding

Advanced search

Expression sequences of opine synthase genes in natural GMOs based on analysis of their transcriptomes

https://doi.org/10.30901/2658-6266-2022-3-o2

Abstract

Agrobacterium is a natural genetic material delivery system that humans use to produce genetically modified plants (GMO). In nature, GMOs also occur with the participation of agrobacteria. In 2019, the list of known natural GMOs was expanded by an order of magnitude, and facts were found in favor of the expression of agrobacterial genes in natural GMOs. The frequency of this phenomenon for dicotyledon plants has been estimated at 7 percent. Opine synthase genes turned out to be the predominant ones of agrobacterial origin in natural GMOs. They probably perform important functions in natural GMOs. In 2021, an article was published with an updated list of natural GMOs, but the list of genes expressed in natural GMOs has not been updated since 2019. The aim of this work is to update the list of opine synthase genes expressed in natural GMOs. The research methods included bioinformatic search using queries based on the sequences of opine synthase proteins from Agrobacterium rhizogenes, A.tumefaciens and A. vitis, their homologues from Ipomoea and Nicotiana plants, in the TSA database of the National Center for Biotechnology Information (NCBI) using the TBLASTN algorithm with default settings. The study resulted in the addition of another 18 species to the list of natural GMOs with expressed opine synthase genes, 12 of which belong to genera where natural GMOs were not previously described (Albizia, Cenostigma, Averrhoa, Gynostemma, Eurycoma, Gypsophila, Myosoton, Camptotheca, Gustavia, Eschweilera, Cestrum, Jasminum, and Paulownia). An analysis of the diversity of the detected sequences showed that homologues of cucumopine and mikimopine synthase predominate among them. The end products of these genes are optical isomers. In the future, it makes sense to start studying the functions of opine synthases in plants from these genes.

About the Authors

F. D. Bogomaz
Lyceum 281 of the Admiralteysky District
Russian Federation

Fedor Denisovich Bogomaz, 10 “Aˮ grade student

Sovetsky Lane, Bldg. 4, Lit. A, St. Petersburg, 190005



T. V. Matveeva
St. Petersburg State University
Russian Federation

Tatiana Valeryevna Matveeva, Dr. Sci. (Biology), Professor, Department of Genetics and Biotechnology, Faculty of Biology

7/9, Universitetskaya Embankment, St. Petersburg, 199034



References

1. Chilton MD. Agrobacterium Ti plasmids as a tool for genetic engineering in plants. In: Rains D.W., Valentine R.C., Hollaender A. [eds.] Genetic engineering of osmoregulation, Basic life sciences. V.14. New York: Plenum Press; 1980, p.23-31. DOI: 10.1007/978-1-4684-3725-6_3

2. Gleba Yu.Yu. Biotechnology of plants. Soros Educational Journal. 1998;6:3-8. [In Russian]

3. Kyndt T, Quispe D, Zhai H, Jarret R., Ghislain M., Liu Q., Gheysen G., Kreuze J.F. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proceedings of the National Academy of Sciences. 2015;112(18):5844-5849. DOI: 10.1073/pnas.1419685112

4. Lutova L.A. Plant biotechnology: accomplishments and hopes. Soros Educational Journal, 2000;6(10):10-17. [In Russian]

5. Matveeva TV, Otten L. Opine biosynthesis in naturally transgenic plants: Genes and products. Phytochemistry. 2021;189:112813. DOI: 10.1016/j.phytochem.2021.112813

6. Matveeva T.V. Why do plants need agrobacterial genes? Ecological Genetics. 2021;19(4):365-375. DOI: 10.17816/ecogen89905, Available from: https://journals.eco-vector.com/ecolgenet/article/view/89905/pdf_1 [accessed May 01, 2022]

7. Matveeva T.V. New naturally transgenic plants: 2020 update. Biological Communications. 2021;66 (1):36-46. DOI: 10.21638/spbu03.2021.105

8. Matveeva T.V., Otten L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Molecular Biology. 2019;101:415-437. DOI: 10.1007/s11103-019-00913-y

9. Matveeva T.V., Sokornova S.V. Biological traits of naturally transgenic plants and their evolutional roles. Russian Journal of Plant Physiology. 2017;64:635-648. DOI: 10.1134/S1021443717050089

10. Mousavi S.A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., de Lajudie P., Lindström K. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Systematic and Applied Microbiology. 2014;37(3):208-215. DOI: 10.1016/j.syapm.2013.12.007

11. NCBI, National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov [accessed May 01, 2022]

12. Nester E.W. Agrobacterium: nature’s genetic engineer. Frontiers in Plant Science. 2014;5:730. DOI: 10.3389/fpls.2014.00730

13. Sawada H., Ieki H., Oyaizu H., Matsumoto S. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. International Journal of Systematic Bacteriology. 1993;43(4):694-702.

14. TSA, Transcriptome Shotgun Assembly Sequence Database. Available from: https://www.ncbi.nlm.nih.gov/genbank/tsa [accessed May 01, 2022]

15. Vladimirov I.A, Matveeva T.V, Lutova L.A. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Russian Journal of Genetics. 2015;51(2):121-129. DOI: 10.1134/S1022795415020167

16. White F.F., Garfinkel D.J., Huffman G.A., Gordon M.T., Nester E.W. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. 1983;3012:348-350. DOI: 10.1038/301348a0

17. Yan J., Li Y., Han X.Z., Chen W.F., Zou W.X., Xie Z., Li M. Agrobacterium deltaense sp. nov., an endophytic bacteria isolated from nodule of Sesbania cannabina. Archives of Microbiology. 2017;199(7):1003-1009. DOI: 10.1007/s00203-017-1367-0

18. Young J.M., Kuykendall L.D., Martínez-Romero E., Kerr A., Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola, and R. vitis. International Journal of Systematics and Evolutionary Microbiology. 2001;51(1):89-103. DOI: 10.1099/00207713-51-1-89


Supplementary files

Review

For citations:


Bogomaz F.D., Matveeva T.V. Expression sequences of opine synthase genes in natural GMOs based on analysis of their transcriptomes. Plant Biotechnology and Breeding. 2022;5(3):15-24. (In Russ.) https://doi.org/10.30901/2658-6266-2022-3-o2

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)