Preview

Plant Biotechnology and Breeding

Advanced search

Application of the CRISPR/Cas system for gene editing in ornamental crops

https://doi.org/10.30901/2658-6266-2022-3-o1

Abstract

Ornamental plants are widespread and popular all over the world. Floriculture industry is of significant economic importance for some countries. Favorable prospects for the development of industrial floriculture were also noted for Russia. This can be facilitated by CRISPR/Cas, a breakthrough method of editing genes responsible for economically valuable traits of plants, which allows bypassing the limitations of the potential intraspecific variability of plants and solving the problem of obtaining non-transgenic modified plants. This article analyzes the current status of ornamental crop breeding using the CRISPR/Cas genetic editing method. The articles were selected from the Scopus database. A search encompassing 50 most common ornamental crops yielded the total of 26 articles on genetic editing using the CRISPR/Cas system, in particular: 8 articles featuring petunia; 1 per each crop on chrysanthemum, kalanchoe, poinsettia and tobacco; 2 per each on dendrobium, gentian, lily and torenia, and 3 per each on phalaenopsis and ipomoea. The found articles were divided into three groups. The first group includes works devoted to studies of mechanisms of genes controlling useful traits, as well as the optimization of the CRISPR/Cas method for a particular crop. The second group unites works aimed at modifying color of flowers and leaves. The third group includes works on increasing the life span of a flower and obtaining double flowers. The review offers the works on the optimization of gene editing in representatives of the orchid family Orchidaceae Juss. Also, it notes the prospects of gene editing by the CRISPR/Cas system, which can accelerate qualitative improvements in breeding and raise it effectiveness, it being especially important in present conditions.

About the Author

R. S. Rakhmangulov
N. I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ruslan S. Rakhmangulov, Cand. Sci. (Biology), Senior Researcher, Laboratory of Postgenomic Research

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Gattolin S., Cirilli M., Chessa S., Stella A., Bassi D., Rossini L. Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. Journal of Experimental Botany. 2020;71(9):2585-2595. DOI: 10.1093/jxb/eraa032

2. Heler R., Samai P., Modell J.W., Weiner C., Goldberg G.W., Bikard D., Marraffini L.A. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature. 2015;519(7542):199-202. DOI: 10.1038/nature14245

3. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E.A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI: 10.1126/science.1225829

4. Khlestkina E.K., Shumny V.K. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Russian Journal of Genetics. 2016;52(7):774-787. [in Russian] (Хлесткина Е.К., Шумный В.К. Перспективы использования прорывных технологий в селекции: система CRISPR/Cas9 для редактирования генома растений. Генетика. 2016;52(7):774-787). DOI: 10.7868/S0016675816070055

5. Kishi-Kaboshi M., Aida R., Sasaki K. Generation of gene-edited chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiology. 2017;58(2):216-226. DOI: 10.1093/pcp/pcw222

6. Kui L., Chen H., Zhang W., He S., Xiong Z., Zhang Y., Yan L., Zhong C., He F., Chen J., Zeng P., Zhang G., Yang S., Dong Y., Wang W., Cai J. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Frontiers in Plant Science. 2017;7:2036. DOI: 10.3389/fpls.2016.02036

7. Kuluev B.R., Kiryanova O.Yu., Gerashchenkov G.A., Rozhnova N.A., Gumerova G.R., Vershinina Z.R., Matniyazov R.T., Akhmetzyanova L.U., Knyazev A.V., Mikhaylova E.V., Garafutdinov R.R., Baymiev An.Kh., Gubaydullin I.M., Baymiev Al.Kh., Chemeris A.V. Some novelties in CRISPR/Cas genome editing and related areas. Biomics. 2019;11(3):315-343. [In Russian]. DOI: 10.31301/2221-6197.bmcs.2019-27

8. Lin Y., Jones M.L. CRISPR/ Cas9-mediated editing of autophagy gene 6 in Petunia decreases flower longevity, seed yield, and phosphorus remobilization by accelerating ethylene production and senescence-related gene expression. Frontiers in Plant Science. 2022;13:840218. DOI: 10.3389/fpls.2022.840218

9. Liu D., Chen M., Mendoza B., Cheng H., Hu R., Li L., Trinh C.T., Tuskan G.A., Yang X. CRISPR/Cas9-mediated targeted mutagenesis for functional genomics research of crassulacean acid metabolism plants. Journal of Experimental Botany. 2019;70(22):6621-6629. DOI: 10.1093/jxb/erz415

10. Nishihara M., Higuchi A., Watanabe A., Tasaki K. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology. 2018;18:331. DOI 10.1186/s12870-018-1539-3

11. Nitarska D., Boehm R., Debener T., Lucaciu R.C., Halbwirth H. First genome edited poinsettias: targeted mutagenesis of flavonoid 3′-hydroxylase using CRISPR/Cas9 results in a colour shift. Plant Cell, Tissue and Organ Culture (PCTOC). 2021;147:49-60. DOI: 10.1007/s11240-021-02103-5

12. Nopitasari S., Setiawati Y., Lawrie M.D., Purwantoro A., Widada J., Sasongko A.B., Yoshioka Y., Matsumoto S., Ninomiya K., Asano Y., Semiarti E. Development of an agrobacterium-delivered CRISPR/Cas9 for Phalaenopsis amabilis (L.) Blume genome editing system. The 6th International Conference on Biological Science ICBS. AIP Publishing. 2020;2260:060014-1–060014-10. DOI: 10.1063/5.0015868

13. Rakhmangulov R.S., Tikhonova N.G. Breeding of ornamental plants in Russia. Plant Biotechnology and Breeding. 2021;4(4):40-54. [In Russian]. DOI: 10.30901/2658-6266-2021-4-o4

14. Sasaki K., Ohtsubo N. Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. Planta. 2020;251:101. DOI: 10.1007/s00425-020-03393-3

15. Scopus, Elsevier's abstract and citation database. Available from: https://www.scopus.com/search/form.uri?zone=TopNavBar&origin=sbrowse&display=basic#basic [accessed July 05, 2022]

16. Semiarti E., Nopitasari S., Setiawati Y., Lawrie M.D., Purwantoro A., Widada J., Ninomiya K., Asano Y., Matsumoto S., Yoshioka Y. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indonesian Journal of Biotechnology. 2020;25(1):61-68. DOI: 10.22146/ijbiotech.39485

17. Setiawati Y., Nopitasari S., Lawrie M.D., Purwantoro A., Widada J., Sasongko A.B., Ninomiya K., Asano Y., Matsumoto S., Yoshioka Y., Semiarti E. Agrobacterium-mediated transformation facilitates the CRISPR/Cas9 genome editing system in Dendrobium macrophyllum A. Rich. Orchid. The 6th International Conference on Biological Science ICBS. AIP Publishng. 2020;2260:060016-1–060016-9. DOI: 10.1063/5.0016200

18. Shibuya K., Watanabe K., Ono M. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiology and Biochemistry. 2018;131:53-57. DOI: 10.1016/j.plaphy.2018.04.036

19. Song S., Yan R., Wang C., Wang J., Sun H. Improvement of a genetic transformation system and preliminary study on the function of LpABCB21 and LpPILS7 based on somatic embryogenesis in Lilium pumilum DC. Fisch. International Journal of Molecular Sciences. 2020;21(18):6784. DOI: 10.3390/ijms21186784

20. Strygina K.V., Khlestkina E.K. Wheat, barley and maize genes editing using the CRISPR/Cas system. Plant Biotechnology and Breeding. 2020;3(1):46-56. [In Russian]. DOI: 10.30901/2658-6266-2020-1-o2

21. Subburaj S., Chung S.J., Lee C., Ryu S.-M., Kim D.H., Kim J.-S., Bae S., Lee G.-J. Site-directed mutagenesis in Petunia hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports. 2016;35:1535-1544. DOI: 10.1007/s00299-016-1937-7

22. Sun L., Kao T.-H. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction. 2018;31:129-143. DOI: 10.1007/s00497-017-0314-1

23. Tasaki K., Higuchi A., Watanabe A., Sasaki N., Nishihara M. Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers. Scientific Reports. 2019;9:15831. DOI: 10.1038/s41598-019-51808-3 1

24. Tasaki K., Yoshida M., Nakajima M., Higuchi A., Watanabe A., Nishihara M. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology. 2020;20:370. DOI: 10.1186/s12870-020-02565-3

25. Tikhonova N.G., Khlestkina E.K. Genetic editing for improvement of fruit and small fruit crops. Horticulture and viticulture. 2019;(44):10-15. [In Russian]. DOI: 10.31676/0235-2591-2019-4-10-15

26. Tong C.-G., Wu F.-H., Yuan Y.-H., Chen Y.-R, Lin C.-S. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal. 2020;18:889-891. DOI: 10.1111/pbi.13264

27. Watanabe K., Kobayashi A., Endo M., Ono K.S., Toki S., Ono M. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports. 2017;7:10028. DOI: 10. 1038/s41598-017-10715-1

28. Watanabe K., Oda-Yamamizo C., Sage-Ono K., Ohmiya A., Ono M. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research. 2018;27:25-38. DOI: 10.1007/s11248-017-0051-0

29. Xu J., Naing A.H., Bunch H., Jeong J., Kim H., Kima C.K. Enhancement of the flower longevity of petunia by CRISPR/Cas9-mediated targeted editing of ethylene biosynthesis genes. Postharvest Biology and Technology. 2021;174:111460. DOI: 10.1016/j.postharvbio.2020.111460

30. Yan R., Wang Z., Ren Y., Li H., Liu N., Sun H. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Sciences. 2019;20:2920. DOI: 10.3390/ijms20122920

31. Yu J., Tu L., Subburaj S., Bae S., Lee G.-J. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR/Cas9 ribonucleoproteins. Plant Cell Reports. 2021;40:1037-1045. DOI: 10.1007/s00299-020-02593-1

32. Zhang B., Xu X., Huang R., Yang S., Li M., Guo Y. CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the corolla tube of Petunia hybrida. Horticulture Research. 2021;8:116. DOI: 10.1038/s41438-021-00555-6

33. Zhang B, Yang X, Yang C, Li M, Guo Y. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Scientific Reports. 2016;6:1-8. DOI: 10.1038/s41598-016-0001-8


Review

For citations:


Rakhmangulov R.S. Application of the CRISPR/Cas system for gene editing in ornamental crops. Plant Biotechnology and Breeding. 2022;5(3):33-41. (In Russ.) https://doi.org/10.30901/2658-6266-2022-3-o1

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)