Preview

Plant Biotechnology and Breeding

Advanced search

Rice genome editing using CRISPR/Cas system

https://doi.org/10.30901/2658-6266-2019-1-49-54

Abstract

Genome editing using the CRISPR/Cas system is a breakthrough tech­nology in plant genetics and breeding. The most large-scale application of this new technology on crop species is observed for rice. This fact is explained not only by the significance of this crop, but also by the relatively high transformation amenability. Although the end result of genome editing is a non-transgenic plant with desired mutation (muta­tions), an unavoidable step in the process of creating such a new mutant is the use of genetic engineering methods. To date, the CRISPR/Cas sys­tem has been tested on dozens of rice target genes, of which mutations in more than 30 genes have led to the desired improvement of economically important traits. The remaining experiments are related mainly to the verification of the genes’ functions, and belong to the field of reverse genetics. Improvement or acquisition of new properties is associated with mutations in the genes that affect productivity, grain fragrance and chemical composition, flowering time, the resistance to biotic and abiotic stress factors, and herbicides, as well as pollination control needed in hybrid breeding. These achievements are reviewed in the current article. It is important to note that about fifty different genotypes are already involved in improving rice varieties with the help of genome editing. This creates the prerequisites for a wide practical application of genome editing technologies in rice breeding programs

About the Author

E. K. Khlestkina
N. I. Vavilov All-Russian Institute of Plant Genetic Resources  (VIR);  Institute of Cytology and Genetics SB RAS.
Russian Federation
42–44, Bolshaya Morskaya St., St. Petersburg, 190000; 10 Lavrentyeva Ave., Novosibirsk 630090.


References

1. Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 131: 58-62. DOI: 10.1016/J.PLAPHY.2018.04.033

2. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong., Miguel T, Paszkowski U, ZhangS, ColbertM, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell., Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296(5565): 92-100. DOI: 10.1126/science.1068275

3. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/ Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences (USA), 111: 4632-4637. DOI: 10.1073/pnas.1400822111

4. Kolchanov NA, Kochetov AV, Salina EA, Pershina LA, Khlestkina EK, Shumny VK (2017) Status and prospects of marker-assisted and genomic plant breeding. Herald of the Russian Academy of Sciences, 87(2): 125-131. DOI: 10.1134/S1019331617020113

5. Korotkova AM, Gerasimova S V Khlestkina EK Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding.2019;23(1): 29-37. DOI 10.18699/VJ19.458

6. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination- mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31: 688-691. DOI:10.1038/nbt.2654

7. Li M, Li X, Zhou Z, Wu P Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016a) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 7: 377. DOI: 10.3389/fpls.2016.00377

8. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016b) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plant., 2: 16139. DOI 10.1038/ nplants.2016.139

9. Li Q, Zhang D, Chen M, Liang W, Wei J, Qi Y, Yuan Z (2016) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. Journal of Genetics and Genomics, 43: 415-419. DOI: 10.1016/j.jgg.2016.04.011

10. Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. Journal of Genetics and Genomics, 44(3): 175-178. DOI: 10.1016/J.JGG.2017.02.001

11. Li J, ZhangX, Sun Y, Zhang J, Du W, Guo X, Li X, Zhao Y, Xia L (2018) Efficient allelic replacement in rice by gene editing: a case study of the NRT1.1B gene. Journal of Integrative Plant Biology, 60(7): 536-540. DOI: 10.1111/jipb.12650

12. Lu H, Liu S, Xu S, Chen W, Zhou X, Tan Y, Huang J, Shu Q (2017) CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnology Journal, 15(11): 1371-1373. DOI:10.1016/j.molp.2016.11.013

13. Lu Y, Zhu J-K (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant, 10: 523-525.

14. Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy ofSciences (USA), 115(23): 6058-6063. DOI: 10.1073/ pnas.1804774115

15. Nieves-CordonesM, MohamedS, Tanoi K, Kobayashi NI, Takagi K, Vernet A, Guiderdoni E, Perin C, Sentenac H, Very AA (2017) Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. The Plant Journal, 92: 43-56. DOI: 10.1111/tpj.13632

16. Nekrasov V, StaskawiczB, WeigelD, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31: 691-693. DOI: 10.1038/nbt.265

17. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology; 31: 686-688. DOI: 10.1038/nbt.2650

18. Shen L, Wan C, Fu Y, Wang J, Liu Q, Zhan X, Yan C, Qian Q, Wang K. (2018) QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology; 60: 89-93. DOI: 10.1111/jipb.12501

19. Shen L, Hua Y, Fu Y, Li J, Liu Q, Jiao X, Xin G., Wang J, Wang X, Yan C, Wang K (2017a) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences; 60(5): 506-515. DOI: 10.1007/s11427-017- 9008-8

20. Shen R, Wang L, Liu X, Wu J, Jin W, Zhao X, Xie X, Zhu Q, Tang H, Li Q, Chen L, Liu YG (2017b) Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nature Communications; 8(1): 1310. DOI: 10.1038/s41467-017-01400-y

21. Shimatani Z, Fujikura U, Ishii H, Terada R, Nishida K, Kondo A (2018) Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data in Brief; 20: 1325-1331. DOI: 10.1016/J.DIB.2018.08.124

22. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology; 35(5): 441-443. DOI: 10.1038/nbt.3833

23. Sun Y Zhan X, Wu C, He Y, Ma Y, HouH, Guo X, Du W, Zha Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9- mediated homologous recombination of acetolactate synthase. Molecular Plant; 9: 628-631. DOI:10.1016/j.molp.2016.01.001

24. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/ Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science; 8: 298. DOI: 10.3389/fpls.2017.00298

25. Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports; 7(1): 14438. DOI: 10.1038/s41598-017- 14832-9

26. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE; 11(4): e0154027. DOI: 10.1371/journal.pone.0154027

27. Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen QF (2017) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science; 8: 1868. DOI: 10.3389/fpls.2017.01868

28. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant.; 6: 1975-1983. DOI:10.1093/mp/sst119

29. Xie Y, Niu B, Long Y, Li G, Tang J, Zhang Y, Ren D, Liu Y, Chen L (2017) Suppression or knockout of SaF / SaM overcomes the Sa- mediated hybrid male sterility in rice. Journal of Integrative Plant Biology; 59(9): 669-679. DOI: 10.1111/jipb.12564

30. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9- mediated multiplex genome editing in rice. Journal of Genetics and Genomics; 43; 529-532. DOI: 10.1016/j.jgg.2016.07.003

31. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li ., Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science; 296(5565): 79-92. DOI: 10.1126/science.1068037

32. Zhang J, Zhang H, Botella JR, Zhu JK (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology; 60(5): 369-375. DOI: 10.1111/jipb.12620

33. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C (2016) Development of commercial thermo¬sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports; 6: 37395. DOI 10.1038/srep37395


Review

For citations:


Khlestkina E.K. Rice genome editing using CRISPR/Cas system. Plant Biotechnology and Breeding. 2019;2(1):49-54. (In Russ.) https://doi.org/10.30901/2658-6266-2019-1-49-54

Views: 1681


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)