Preview

Plant Biotechnology and Breeding

Advanced search

Transcriptional activity of mitochondrial genes in intraspecific and interspecific sunflower hybrids

https://doi.org/10.30901/2658-6266-2023-1-o1

Abstract

Relevance. The genetic structure of plant cells implies the coordinated work of three genomes: nuclear, plastid, and mitochondrial. Hybridization between genetically heterogeneous parents can lead to changes in the established nuclear-cytoplasmic balance, which in turn can affect the level and consistency of their gene expression. Changes in the transcriptional activity of organelle genes (in particular, mitochondria) during distant (interspecific) hybridization remain poorly understood. Results. The present study employed the qPCR technique to evaluate the transcriptional activity level of the mitochondrial genes atp1, atp4, atp6, atp9, nad3, nad6, cox1, and cox3 in intra- and interspecific sunflower hybrids and their parental forms from the VIR collection. According to the analyzed transcriptional activity of mitochondrial genes, they can be divided into three groups: genes with a relatively high level of expression – atp1, atp6, and nad6, those with a medium level of expression – atp4, cox1, cox3, and genes with a low level of expression – atp9 and nad3. Comparative analysis showed no significant difference (P<0.05) between maternal lines and hybrids. However, the expression of the nad6 gene in the case of Helianthus argophyllus (Torr. & A. Gray) was 2.6 times higher than in the cultivated sunflower lines. Conclusion. The absence of substantial changes in the expression of mitochondrial genes both in intra- and interspecific hybrids indicates the lack of significant changes in the regulation of nuclear-cytoplasmic interactions in these hybrids.

About the Authors

M. S. Makarenko
Institute for Information Transmission Problems of the Russian Academy of Sciences
Russian Federation

Maksim S. Makarenko, Cand. Sci. (Biol.), Researcher, Laboratory of Plant Genomics

19, Bolshoy Karetny Pereulok, Bldg 1, Moscow, 127051, Russia



V. А. Gavrilova
N.I. Vavilov All Russian Institute of Plant Genetic Resources
Russian Federation

Vera A. Gavrilova, Dr. Sci. (Biol.), Chief Researcher, Department of Oil and Fiber Crops Genetic Resources

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



References

1. Barb J.G., Bowers J.E., Renaut S., Rey J.I., Knapp S.J., Rieseberg L.H., Burke J.M. Chromosomal evolution and patterns of introgression in Helianthus. Genetics. 2014;197:969-979. DOI: 10.1534/genetics.114.165548

2. Barreto P., Dambire C., Sharma G., Vicente J., Osborne R., Yassitepe J., Gibbs D.J., Maia I.G., Holdsworth M.J., Arruda P. Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway. Current Biology. 2022;32:1403-1411.e4. DOI: 10.1016/j.cub.2022.01.037

3. Best C., Mizrahi R., Ostersetzer-Biran O. Why so complex? The intricacy of genome structure and gene expression, associated with angiosperm mitochondria, may relate to the regulation of embryo quiescence or dormancy – intrinsic blocks to early plant life. Plants. 2020;9:598. DOI: 10.3390/plants9050598

4. Bock D.G., Andrew R.L, Rieseberg L.H. On the adaptive value of cytoplasmic genomes in plants. Molecular Ecology. 2014;23:4899-4911. DOI: 10.1111/mec.12920

5. Bohra A., Jha U.C., Adhimoolam P., Bisht D., Singh N.P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Reports. 2016;35:967-993. DOI: 10.1007/s00299-016-1949-3

6. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry. 2009;55:611-622. DOI: 10.1373/clinchem.2008.112797

7. Chang C.C., Rodriguez J., Ross J. Mitochondrial – Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids. G3 Genes|Genomes|Genetics. 2016;6:209-219. DOI: 10.1534/g3.115.022970

8. Chevigny N., Schatz-Daas D., Lotfi F., Gualberto J.M. DNA Repair and the Stability of the Plant Mitochondrial Genome. International Journal of Molecular Sciences. 2020;21(1):328. DOI: 10.3390/ijms21010328

9. Garmash E.V. Mitochondrial respiration of the photosynthesizing cell. Russian Journal of Plant Physiology. 2016;63:13-25. DOI: 10.1134/S1021443715060072

10. Giegé P., Sweetlove L.J., Cognat V., Leaver C.J. Coordination of Nuclear and Mitochondrial Genome Expression during Mitochondrial Biogenesis in Arabidopsis. The Plant Cell. 2005;17:1497-1512. DOI: 10.1105/tpc.104.030254

11. Gualberto J.M., Mileshina D., Wallet C., Niazi A.K., Weber-Lotfi F., Dietrich A. The plant mitochondrial genome: Dynamics and maintenance. Biochimie. 2014;100:107-120. DOI: 10.1016/j.biochi.2013.09.016

12. Kleine T., Leister D. Retrograde signaling: Organelles go networking. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2016;1857:1313-1325. DOI: 10.1016/j.bbabio.2016.03.017

13. Knoop V., Volkmar U., Hecht J., Grewe F. Mitochondrial Genome Evolution in the Plant Lineage. In: Kempken F. (ed). Plant Mitochondria. Springer, New York, NY; 2011. p.3-29. (Advances in Plant Biology (AIPB); vol. 1). DOI: 10.1007/978-0-387-89781-3_1

14. Leister D. Retrograde signaling in plants: from simple to complex scenarios. Frontiers in Plant Science. 2012;3:135. DOI: 10.3389/fpls.2012.00135

15. Makarenko M.S., Gavrilova V.A. NGS Reads Dataset of Sunflower Interspecific Hybrids. Data. 2023;8:67. DOI: 10.3390/data8040067

16. Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. The New Phytologist. 2010;186:299-317. DOI: 10.1111/j.1469-8137.2010.03195.x

17. Meena H.P., Sujatha M., Pushpa H.D., Lai J.J. Cytomorphological and molecular characterization of inter-specific hybrid between cultivated sunflower and Helianthus argophyllus. Journal of Environmental Biology; 2020;41:66-72. DOI: 10.22438/jeb/41/1/MRN-1116

18. Morley S.A., Nielsen B.L. Plant mitochondrial DNA. Frontiers in Bioscience (Landmark Edition). 2017;22:1023-1032. DOI: 10.2741/4531

19. Park H.S., Lee W.K., Lee S.C., Lee H.O., Joh H.J., Park J.Y., Kim S., Song K., Yang T.J. Inheritance of chloroplast and mitochondrial genomes in cucumber revealed by four reciprocal F1 hybrid combinations. Scientific Reports. 2021;11:2506. DOI: 10.1038/s41598-021-81988-w

20. Sujatha M., Lakshminarayana M. Resistance to Spodoptera litura (Fabr.) in Helianthus species and backcross derived inbred lines from crosses involving diploid species. Euphytica. 2007;155:205-213. DOI: 10.1007/s10681-006-9322-1

21. Wang Y., Selinski J., Mao C., Zhu Y., Berkowitz O., Whelan J. Linking mitochondrial and chloroplast retrograde signalling in plants. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190410. DOI: 10.1098/rstb.2019.0410

22. Zancani M., Braidot E., Filippi A., Lippe G. Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020;53:178-193. DOI: 10.1016/j.mito.2020.06.001


Review

For citations:


Makarenko M.S., Gavrilova V.А. Transcriptional activity of mitochondrial genes in intraspecific and interspecific sunflower hybrids. Plant Biotechnology and Breeding. 2023;6(1):13-18. (In Russ.) https://doi.org/10.30901/2658-6266-2023-1-o1

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)