Studies of the molecular mechanisms of grape (Vitis vinifera L.) resistance to low-temperature stress
https://doi.org/10.30901/2658-6266-2023-4-o7
Abstract
Abiotic stressors are the main factors limiting the expansion of territories occupied by grape plantations. Industrial viticulture is concentrated in the south of Russia and is limited by climatic factors that do not allow large-scale production in other regions of the country.
The present review considers the molecular mechanisms of resistance to low-temperature stress and discusses the role of the main genes determining the ability of plants to survive and acclimatize during a critical temperature drop.
One of the most studied ways of responding to cold stress is the interaction of genes in the ICE-CBF-COR cascade, however, a more accurate understanding of the genes responsible for resistance to abiotic environments specifically in grapes requires additional studies. A series of studies of functions of transcription factors and related genes of response to low-temperature stress in various species (Arabidopsis, tea, orange, blueberry, and grape) have identified four main regulons: 1) CBF/DREB, 2) NAC/ZF-HD, 3) AREB/ABF, and 4) MYC/MYB. Studies have demonstrated the function of the HOS1 gene, which negatively regulates the work of ICE1 (a key resistance factor). The review considers candidate genes in various species of annual plants: ICE1, HOS1, SIZ1, MPK3, MPK6, in families of genes: CBF, COR, RD 29A, LTI78, ERD, LEA; DREB1, ADREB1B; WRKY10, and in perennial crops: ICE1, CBF1, HSP70, SUS1, GST, DHN1, BMY5, BHLH102, GR-RBP3, ICE1, GOLS1, GOLS3; CBF; COR27, RD29B, NCED1, ERF105, ZAT10, SAP15, WRKY3, and LEA.
Until recently, interspecific hybridization was the leading method for obtaining cold-resistant grape varieties. The main donor of resistance is V. аmurensis Rupr. Recently, the research focused on the genetic basis of grape resistance to low temperatures is actively developing. For instance, a comparative analysis of the transcriptomes of two species contrasting in this trait, i.e. V. amurensis, resistant to low temperatures, and V. vinifera L. with low cold resistance, made it possible to identify three additional candidate genes with an increased expression in response to exposure to low temperatures, namely CBF3, ERF105 and ZAT10. At the same time, the practical application of modern accelerated breeding methods requires the identification of all additional key genes responsible for resistance to low-temperature stress. The components from the cascade of sequentially expressing ICE–CBF–COR genes (ICE1, ICE2, CBF1, CBF2, CBF3, and HOS1) have been selected as candidate genes.
About the Authors
M. V. ErastenkovaRussian Federation
Maria V. Erastenkova, Postgraduate Student, Associate Researcher, Laboratory of Genetics, Breeding and Biotechnology of Berry and Ornamental Crops, Department of Fruit Crops Genetic Resources, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
N. G. Tikhonova
Russian Federation
Nadezhda G. Tikhonova, Cand. Sci. (Biology), Senior Researcher, Department of Fruit Crops Genetic Resources, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
Yu V. Ukhatova
Russian Federation
Yulia V. Ukhatova, Cand. Sci. (Biology), Deputy Director for Scientific and Organizational Work, VIR; Senior Researcher, Sirius University of Science and Technology
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia;
1, Olympic avenue, Sirius urban-type settlement, Sirius Federal Territory, Krasnodar region, 354340 Russia
References
1. An J.-P., Li R., Qu F.-J., You C.-X., Wang X.-F., Hao Y.-J. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. The Plant Journal. 2018;96:562-577. DOI: 10.1111/tpj.14050
2. Chistyakov P.N., Novikova L.Yu. Assessment of the climate needs of grapes on the ETR using GIS technologies. Viticulture and winemaking. 2020;49:201-203. [in Russian]
3. Davitaya F.F. Climatic zones of grapes in the USSR (Klimaticheskie zony vinograda v SSSR). Moscow: Pishchepromizdat; 1948. [in Russian]
4. Dong C.H., Agarwal M., Zhang Y., Xie Q., Zhu J.K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences. 2006;103(21):8281-8286. DOI: 10.1073/pnas.0602874103
5. Dryagin V.B., Nikolenko A.A. The current state of winemaking in the Russian Federation. Magarach. Viticulture and winemaking. 2017;(1):28-30. [in Russian]
6. FAOSTAT. The Food and Agriculture Organization (FAO) of the United Nations. Available from: URL: https://www.fao.org/faostat/en/#data/QCL/visualize [accessed Oct. 20, 2023].
7. Giacomelli L., Zeilmaker T., Scintilla S., Salvagnin U., van der Voort J.R., Moser C. Vitis vinifera plants edited in DMR6 genes show improved resistance to downy mildew. bioRxiv. The Preprint Server for Biology. 2022. DOI: 10.1101/2022.04.19.488768
8. Guo J., Ren Y., Tang Z., Shi W., Zhou M. Characterization and expression profiling of the ICE-CBF-COR genes in wheat. PeerJ. Life and Environment. 2019;7:e8190. DOI: 10.7717/peerj.8190
9. Guo R., Qiao H., Zhao J., Wang X., Tu M., Guo C., Wan R., Li Z., Wang X. The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Frontiers in Plant Science. 2018;9:545. DOI: 10.3389/fpls.2018.00545
10. Guo X., Liu D., Chong K. Cold signaling in plants: insights into mechanisms and regulation. Journal of Integrative Plant Biology. 2018;60(9):745-756. DOI: 10.1111/jipb.12706
11. Haake V., Cook D., Riechmann J., Pineda O., Thomashow M.F., Zhang J.Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology. 2002;130(2):639-648. DOI: 10.1104/pp.006478
12. He Z., Zhao T., Yin Z., Liu J., Cheng Y., Xu J. The phytochrome-interacting transcription factor CsPIF8 contributes to cold tolerance in citrus by regulating superoxide dismutase expression. Plant Science. 2020;298:110584. DOI: 10.1016/j.plantsci.2020.110584
13. Henriksson K.N., Trewavas A.J. The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant, Cell & Environment. 2003;26(4):485-496. DOI: 10.1046/j.1365-3040.2003.00979.x
14. Hewer M.J., Brunette M. Climate change impact assessment on grape and wine for Ontario, Canada’s appellations of origin. Regional Environmental Change. 2020;20(3):86. DOI: 10.1007/s10113-020-01673-y
15. Huang G.T., Ma S.L., Bai L.P., Zhang L., Ma H., Jia P., Liu J., Zhong M., Guo Z.F. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports. 2012;39(2):969-987. DOI: 10.1007/s11033-011-0823-1
16. Huang X.S., Wang W., Zhang Q., Liu J.H. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology. 2013;162(2):1178-1194. DOI: 10.1104/pp.112.210740
17. Hundertmark M., Hincha D.K. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 2008;9:118. DOI: 10.1186/1471-2164-9-118
18. Hwarari D., Guan Y., Ahmad B., Movahedi A., Min T., Hao Z., Lu Y., Chen J., Yang L. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences. 2022;23(3):1549. DOI: 10.3390/ijms23031549
19. Ibrahime M., Kibar U., Kazan K., Özmen C.Y., Mutaf F., Aşçı S.D., Aydemir B.Ç., Ergül A. Genome-wide identification of the LEA protein gene family in grapevine (Vitis vinifera L.). Tree Genetics & Genomes. 2019;15:1-14. DOI: 10.1007/s11295-019-1364-3
20. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology. 2006;47(1):141-153. DOI: 10.1093/pcp/pci230
21. Jia H., Zhang S., Ruan M., Wang Y., Wang C. Analysis and application of RD29 genes in abiotic stress response. Acta Physiologiae Plantarum. 2012;34:1239-1250. DOI: 10.1007/s11738-012-0969-z
22. Jones G.V., Reid R., Vilks A. Climate, grapes, and wine: structure and suitability in a variable and changing climate. In: P.H. Dougherty (ed.). The Geography of Wine: Regions, Terroir and Techniques. Dordrecht: Springer; 2012. p.109-133. DOI: 10.1007/978-94-007-0464-0_7
23. Ju Y.L., Min Z., Yue X.F., Zhang Y.L., Zhang J. X., Zhang Z.Q., Fang Y.L. Overexpression of grapevine VvNAC08 enhances drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry. 2020a;151:214-222. DOI: 10.1016/j.plaphy.2020.03.028
24. Ju Y.L., Yue X.F., Min Z., Wang X.H., Fang Y.L., Zhang J.X. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry. 2020b;146:98-111. DOI: 10.1016/j.plaphy.2019.11.002
25. Karimi M., Ebadi A., Mousavi S.A., Salami S.A., Zarei A. Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress. Scientia Horticulturae. 2015;197:521-526. DOI: 10.1016/j.scienta.2015.10.011
26. Kidokoro S., Kim J.S., Ishikawa T., Suzuki T., Shinozaki K., Yamaguchi-Shinozaki K. DREB1A/CBF3 is repressed by transgene-induced DNA methylation in the Arabidopsis ice1-1 mutant. The Plant Cell. 2020;32(4):1035-1048. DOI: 10.1105/tpc.19.00532
27. Kravchenko L.V. Genetic resources of grapes, their reaction to changing environmental conditions (Geneticheskie resursy vinograda, ikh reaktsiya na izmenenie usloviy sredy). In: Mobilization and conservation of genetic resources of grapes, improvement of methods of the breeding process; 2008 August 13-14; Novocherkassk, Russia (Mobilizatsiya i sokhranenie geneticheskikh resursov vinograda, sovershenstvovanie metodov selektsionnogo processa: materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii; 13-14 avgusta 2008 g.; Novocherkassk, Rossiya). Novocherkassk; 2008. p.3-10. [in Russian]
28. Kurbidaeva A., Ezhova T., Novokreshchenova M. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. Plant science. 2014;229:10-22. DOI: 10.1016/j.plantsci.2014.08.011
29. Le Hénanff G., Profizi C., Courteaux B., Rabenoelina F., Gérard C., Clément C., Baillieul F., Cordelier S., Dhondt-Cordelier S. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Journal of Experimental Botany. 2013;64(16):4877-4893. DOI: 10.1093/jxb/ert277
30. Li H., Ding Y., Shi Y., Zhang X., Zhang S., Gong Z., Yang S. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Developmental cell. 2017;43(5):630-642. DOI: 10.1016/j.devcel.2017.09.025
31. Liu D., Li W., Cheng J., Hou L. Expression analysis and functional characterization of a cold-responsive gene COR15A from Arabidopsis thaliana. Acta Physiologiae Plantarum. 2014;36(9):2421-2432. DOI: 10.1007/s11738-014-1615-8
32. Medvedev S.S. Plant physiology: textbook (Fiziologiya rasteniy: uchebnik). St. Petersburg: BHV-Petersburg; 2012. [in Russian]
33. Miura K., Jin J.B., Lee J., Yoo C.Y., Stirm V., Miura T., Ashworth E.N., Bressan R.A., Yun D.J., Hasegawa P.M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell. 2007;19(4):1403-1414. DOI: 10.1105/tpc.106.048397
34. Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms. 2012;1819(2):86-96. DOI: 10.1016/j.bbagrm.2011.08.004
35. Msanne J., Lin J., Stone J.M., Awada T. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta. 2011;234(1):97-107. DOI: 10.1007/s00425-011-1387-y
36. Naumova L.G., Novikova L.Y. Diversity on temperature demands of grapes varieties collection of Ya.I. Potapenko All-Russian Research Institute of Viticulture and Winemaking. Fruit growing and viticulture of South Russia. 2015;36(6):86-99. [in Russian]
37. Negrul A.M., Gordeeva L.N., Kalmykova T.I. Ampelography with the basics of viticulture (Ampelografiya s osnovami vinogradarstva). Moscow: Vysshaya shkola Publishers; 1979. [in Russian]
38. Novikova L.Y., Ozerski P.V. Forecast for the zone of viticulture in European Russia under climate change. Vavilov Journal of Genetics and Breeding. 2022;26(3):264-271. [in Russian]. DOI: 10.18699/VJGB-22-33
39. Novillo F., Medina J., Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences. 2007;104(52):21002-7. DOI: 10.1073/pnas.0705639105
40. Olivares F., Loyola R., Olmedo B., de los Ángeles Miccono M., Aguirre C., Vergara R., Riquelme D., Madrid G., Plantat P., Mora R., Espinoza D., Prieto H. CRISPR/Cas9 targeted editing of genes associated with fungal susceptibility in Vitis vinifera L. cv. Thompson seedless using geminivirus-derived replicons. Frontiers in Plant Science. 2021;12:791030. DOI: 10.3389/fpls.2021.791030
41. Ren C., Liu X., Zhang Z., Wang Y., Duan W., Li S., Liang Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports. 2016;6(1):32289. DOI: 10.1038/srep32289
42. Rosstat. Federal State Statistics Service. Available from: https://rosstat.gov.ru/storage/mediabank/pl_m_.xls [accessed Oct. 20, 2023]. [in Russian]
43. Saibo N.J., Lourenço T., Oliveira M.M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of botany. 2009;103(4):609-623. DOI: 10.1093/aob/mcn227
44. Samarina L.S., Bobrovskikh A.V., Doroshkov A.V., Malyukova L.S., Matskiv A.O., Rakhmangulov R.S., Koninskaya N.G. Malyarovskaya V.I., Tong W., Xia E., Manakhova K.A., Ryndin A.V., Orlov Y.L. Comparative expression analysis of stress-inducible candidate genes in response to cold and drought in tea plant [Camellia sinensis (L.) Kuntze]. Frontiers in Genetics. 2020;11:611283. DOI: 10.3389/fgene.2020.611283
45. Shu X., Ding L., Gu B., Zhang H., Guan P., Zhang J. A stress associated protein from Chinese wild Vitis аmurensis, VaSAP15, enhances the cold tolerance of transgenic grapes. Scientia Horticulturae. 2021;285:110147. DOI: 10.1016/j.scienta.2021.110147
46. Soltész A., Smedley M., Vashegyi I., Galiba G., Harwood W., Vágújfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany. 2013;64(7):1849-1862. DOI: 10.1093/jxb/ert050
47. Sun X., Zhao T., Gan S., Ren X., Fang L., Karungo S.K., Wang Y., Chen L., Li S., Xin H. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Scientific reports. 2016;6(1):24066. DOI: 10.1038/srep24066
48. Sun X., Zhu Z., Zhang L., Fang L., Zhang J., Wang Q., Li S., Liang Z., Xin H. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Scientia Horticulturae. 2019;243:320-326. DOI: 10.1016/j.scienta.2018.08.055
49. Thomashow M.F., Gilmour S.J., Stockinger E.J., Jaglo-Ottosen K.R., Zarka D.G. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiologia Plantarum. 2001;112(2):171-175. DOI: 10.1034/j.1399-3054.2001. 1120204.x
50. Tumanov I.I. Physiological foundations of winter hardiness of cultivated plants (Fiziologicheskie osnovy zimostoykosti kul`turnykh rasteniy). Moscow; Leningrad: Selkhozizdat; 1940. [in Russian]
51. Walker M.A., Heinitz C., Riaz S., Uretsky J. Grape Taxonomy and Germplasm. In: D. Cantu, M.A. Walker (eds). The Grape Genome. Ser. Compendium of Plant Genomes (CPG). Springer, Cham; 2019. p.25-38. DOI: 10.1007/978-3-030-18601-2_2
52. Walworth A.E., Rowland L.J., Polashock J.J., Hancock J.F., Song G.Q. Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Molecular Breeding. 2012;30:1313-1323. DOI: 10.1007/s11032-012-9718-7
53. Wang C., Deng P., Chen L., Wang X., Ma H., Hu W., Yao N., Feng Y., Chai R., Yang G., He G. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE. 2013;8(6):e65120. DOI: 10.1371/journal.pone.0065120
54. Wang D.Z., Jin Y.N., Ding X.H., Wang W.J., Zhai S.S., Bai L.P., Guo Z.F. Gene regulation and signal transduction in the ICE–CBF–COR signaling pathway during cold stress in plants. Biochemistry (Moscow). 2017;82:1103-1117. DOI: 10.1134/S0006297917100030
55. Wang H., Datla R., Georges F., Loewen M., Cutler A.J. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Molecular Biology. 1995;28:605-617. DOI: 10.1007/BF00021187
56. Wang Y., Hua J. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. The Plant Journal. 2009;60(2):340-349. DOI: 10.1111/j.1365-313X.2009.03959.x
57. Wang Y., Jiang C.J., Li Y.Y., Wei C.L., Deng W.W. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Reports. 2012;31(1):27-34. DOI: 10.1007/s00299-011-1136-5
58. Wang Y., Xin H., Fan P., Zhang J., Liu Y., Dong Y., Wang Z., Yang Y., Zhang Q., Ming R., Zhong G.Y., Li S., Liang Z. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. The Plant Journal. 2021;105(6):1495-1506. DOI: 10.1111/tpj.15127
59. Wang Z., Darren D.C.J., Wang Y., Xu G., Ren C., Liu Y., Kuang Y., Fan P., Li S., Xin H., Liang Z. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology. 2021;186(3):1660-1678. DOI: 10.1093/plphys/kiab142
60. Xiang Y., Wu C., Sheng S., Huang P., Zhang M., Fang M., Yang J., Huang Y., Cao F., Liu B., Li H., Zhou Y., Duan S., Pu W., Liu L.H. Molecular identification of twenty NtDREB homologs and overexpression of NtDREB_A2 improved plant growth in response to cold-stress and P-nutrition limitation. Environmental and Experimental Botany. 2023. URL: https://www.x-mol.net/paper/article/1728425211986726912 [accessed 21.11.20123]
61. Xu M., Tong Q., Wang Y., Wang Z., Xu G., Elias G.K., Li S., Liang Z. Transcriptomic analysis of the grapevine LEA gene family in response to osmotic and cold stress reveals a key role for VamDHN3. Plant and Cell Physiology. 2020;61(4):775-786. DOI: 10.1093/pcp/pcaa004
62. Xu W., Li R., Zhang N., Ma F., Jiao Y., Wang Z. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Molecular Biology. 2014;86:527-541. DOI: 10.1007/s11103-014-0245-2
63. Yamasaki Y., Randall S.K. Functionality of soybean CBF/DREB1 transcription factors. Plant Science. 2016;246:80-90. DOI: 10.1016/j.plantsci.2016.02.007
64. Yang A., Dai X., Zhang W. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany. 2012;63(7):2541-2556. DOI: 10.1093/jxb/err431
65. Yao C., Li X., Li Y., Yang G., Liu W., Shao B., Zhong J., Huang P., Han D. Overexpression of a Malus baccata MYB transcription factor gene MbMYB4 increases cold and drought tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences. 2022;23(3):1794. DOI: 10.3390/ijms23031794
66. Zaikina E.A., Rumyantsev S.D., Sarvarova E.R., Kuluev B.R. Transcription factor genes involved in plant response to abiotic stress factors. Ecological Genetics. 2019;17(3):47-58. DOI: 10.17816/ecogen17347-58
67. Zandkarimi H., Ebadi A., Salami S.A., Alizade H., Baisakh N. Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). PLoS ONE. 2015;10(7):e0134288. DOI: 10.1371/journal.pone.0134288
68. Zhang L., Zhao T., Sun X., Wang Y., Du C., Zhu Z., Gichuki D.K., Wang Q., Li S., Xin H. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Molecular Biology. 2019;100:95-110. DOI: 10.1007/s11103-019-00846-6
69. Zhao C., Zhang Z., Xie S., Si T., Li Y., Zhu J.K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology. 2016;171(4):2744-2759. DOI: 10.1104/pp.16.00533
70. Zong J.M, Li X.W., Zhou Y.H., Wang F.W., Wang N., Dong Y.Y., Yuan Y.X., Chen H., Liu X.M., Yao N., Li H.Y. The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. International Journal of Molecular Sciences. 2016;17(4):611. DOI: 10.3390/ijms17040611
Review
For citations:
Erastenkova M.V., Tikhonova N.G., Ukhatova Yu.V. Studies of the molecular mechanisms of grape (Vitis vinifera L.) resistance to low-temperature stress. Plant Biotechnology and Breeding. 2023;6(4):48-60. (In Russ.) https://doi.org/10.30901/2658-6266-2023-4-o7