Preview

Plant Biotechnology and Breeding

Advanced search

Flax lines mutant for chlorophyll coloration in the genetic collection of VIR

https://doi.org/10.30901/2658-6266-2023-4-o4

Abstract

Photosynthesis is one of the main biological processes that ensure life on the planet. The use of knowledge about the genetic control of chlorophyll biosynthesis will help to increase the productivity of flax. The paper presents a study of hybrids from the crosses of five lines defective in chlorophyll coloration and five with green coloration of the plant, differing in other morphological characteristics.

Inheritance of 4 nuclear genes controlling the chlorophyll coloration of the plant has been established. The independent genes ygp1 (in the gc-210 line) and ygp2 (in the gc-473 line) control the yellow-green coloration of a young plant (Xanthovirescens). The complementary interaction of these genes, which causes the yellow color of a young plant, has been demonstrated. The genes ygp2 (in gc-473) and ygp2-2 (in gc-570) were proved to be allelic but not identical, since mutations were obtained independently. The non-cumulative polymeric gene interaction which has been established in the case of zeb1 and zeb2 genes (both in the gc-281 line), cause an increase in photosensitivity and alternation of white and green stripes of leaves (Viridoalbostriata). These genes mask the action of the ygp1 and ygp2 genes. For the first time in the world, the maternal type of inheritance of the chlorophyll coloration of the plant, controlled by the chloroplast gene ygp3 of the gc-480 line, has been established in flax. It was found that the gc-570 line, in addition to the ygp2-2 gene, is homozygous for the genes CSB1 (ciliation of the false septa of the boll) and YSED1 (dominant yellow seeds), while the gc-480 line, in addition to the ygp3 gene, is homozygous for the CSB1 and dlb3 genes (light blue corolla). The allelism but not equality of the dlb3 genes in the gc-480 and gc-210 lines has been proven. The genes ygp1 and ygp2, which are responsible for chlorophyll coloration may be promising for labeling varieties. It is necessary to study them in more detail for the possible creation of plastic varieties capable to endure unfavorable environmental conditions at early stages of development.

About the Authors

E. A. Porokhovinova
https://www.vir.nw.ru/vir/podrazdeleniya-instituta/otdely/otdel-geneticheskih-resursov-maslichnyh-i-pryadilnyh-kultur/#1531380506880-da6337c1-59d64d0d-90dfac47-44a6
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elizaveta A. Porokhovinova, Dr. Sci (Biology), Leading Researcher, Department of Oil and Fiber Crop Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



N. B. Brutch
https://www.vir.nw.ru/vir/podrazdeleniya-instituta/otdely/otdel-geneticheskih-resursov-maslichnyh-i-pryadilnyh-kultur/#1531380506880-da6337c1-59d64d0d-90dfac47-44a6
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Nina B. Brutch, Dr. Sci (Biology), Chief Researcher, Head, Department of Oil and Fiber Crop Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



A. A. Slobodkina
https://www.vir.nw.ru/vir/podrazdeleniya-instituta/otdely/otdel-geneticheskih-resursov-maslichnyh-i-pryadilnyh-kultur/#1531380506880-da6337c1-59d64d0d-90dfac47-44a6
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Anastasia A. Slobodkina, postgraduate, Department of Oil and Fiber Crop Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



A. V. Pavlov
https://www.vir.nw.ru/vir/podrazdeleniya-instituta/otdely/otdel-geneticheskih-resursov-maslichnyh-i-pryadilnyh-kultur/#1531380506880-da6337c1-59d64d0d-90dfac47-44a6
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Andrey V. Pavlov, Cand. Sci (Agriculture), Senior Researcher, Department of Oil and Fiber Crop Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



References

1. Andorf C.M., Cannon E.K., Portwood J.L., Gardiner J.M., Harper L.C., Schaeffer M.L., Braun B.L., Campbell D.A., Vinnakota A.G., Sribalusu V.V., Huerta M., Cho K.T., Wimalanathan K., Richter J.D., Mauch E.D., Rao B.S., Birkett S.M., Sen T.Z., Lawrence-Dill C.J. MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Research. 2016;44(D1):D1195-D1201. DOI: 10.1093/nar/gkv1007

2. Bačelis K.P. Chlorofilinës mutacijos linø veislëse, paveiktose cheminiais mutagenais. In: Mutageniniø faktoriø veikimas ir genetiniø metodø taikymas selekcijoje. Vilnius; 1975. p.33-34. [in Lithuanian]

3. Beard B.H., Comstock V.E. Flax genetics and gene symbolism. Crop Science. 1965;5(2):151-155. DOI: 10.2135/cropsci1965.0011183X000500020015x

4. Belcher S., Williams-Carrier R., Stiffler N., Barkan A. Large-scale genetic analysis of chloroplast biogenesis in maize. Biochimica et Biophysica Acta. 2015;1847:1004-1016. DOI: 10.1016/j.bbabio.2015.02.014

5. Brethagne-Sagnard B., Fouilloux G., Ghupeau Y. Induced albina mutations as a tool for genetic analysis and cell biology in flax (Linum usitatissimum). Journal of Experimental Botany. 1996;47(295):189-194. DOI: 10.1093/jxb/47.2.189

6. Comstock V.E., Ford J.H., Beard B.H. Association among seed and agronomic characteristics in isogenic lines of flax. Crop Science. 1963;3(2):171-172. DOI: 10.2135/cropsci1963.0011183X000300020024x

7. Danilenko N.G., Davydenko O.G. Worlds of organelle genomes (Miry genomov organell). Minsk: Technalohija Publishers; 2003. [in Russian]

8. Kalam Yu., Orav T. Chlorophyll mutation (Khlorofilnaya mutatsiya). Tallinn: Valgus; 1974. [in Russian]

9. Keijzer P., Metz P.L.J. Breeding of flax for fibre production in Western Europe. In: H.S. Shekhar Sharma, C.F. van Sumere (eds.). The Biology and Processing of Flax. Belfast: M Publications; 1992. p.33-66.

10. Lakin G.F. Biometrics (Biometriya). Moscow: High School; 1990. [in Russian] (Лакин Г.Ф. Биометрия. Москва: Высшая Школа; 1990).

11. Levchuk H. Polyakova, I. Voitovich H. Lyakh V. Peculiarities of plastid apparatus morphology in chlorophyll mutants of oil flax. Physiology and Biochemistry of Cultivated Plants. 2012;44(3):232-239. [in Russian]

12. Lisitsyn E.M., Churakova S.A., Batalova G.A. Genotypic variability in the functioning of photosystem II in leaves of covered and naked oats. Proceedings on Applied Botany, Genetics and Breeding. 2022;183(3):17-26. [in Russian]. DOI: 10.30901/2227-8834-2022-3-17-26

13. Lopes A.S., Pacheco T.G., Santos K.G., Vieira L.N., Guerra M.P., Nodari R.O., Souza E.M., Pedrosa F.O., Rogalski M. The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. Plant Cell Reports. 2018;37(2):307-328. DOI: 10.1007/s00299-017-2231-z

14. Lyakh V.A., Mishchenko L.Yu., Polyakova I.A. Genetic collection of the species Linum usitatissimum L. Zaporozhye: IMC UAAN; 2003. [in Russian]

15. Nôžková J., Pavelek M., Bjelková M., Brutch N., Tejklová E., Porokhovinova E., Brindza J. Descriptor list for flax (Linum usitatissimum L.). Janka Nôžková (ed.). Nitra: Slovak University of Agriculture in Nitra; 2016. DOI: 10.15414/2016.9788055214849

16. Polyakova I.A. Mutation of viridis type, induced to oilseed flax. Bulletin of Zaporizhzhia National University. 2008;2:163-165. [in Russian]

17. Polyakova I.A. Inheritance of chlorophyll mutation of xanthoviridis in oilseed flax. Scientific and Technical Bulletin of the Institute of Oilseed Crops NAAS. 2009;14:52‐55. [in Russian]

18. Polyakova I.A., Yaranceva V.V., Levchuk A.N., Lyakh V.A. Phenotypical appearance of chlorophyll-deficient mutations at early stages of ontogenesis in oil flax. Current Issues of Biology, Ecology and Chemistry. 2013;1:49-51. [in Russian]

19. Porokhovinova E.A. Genetic control of morphological characters of flax. Proceedings on Applied Botany, Genetics and Breeding. 2011;167:159-184. [in Russian]

20. Porokhovinova E.A. Genetic collection of flax (Linum usitatissimum L.): creation, analysis and prospects of use (Geneticheskaya kollektsiya l'na (Linum usitatissimum L.): sozdaniye, analiz i perspektivy ispol'zovaniya) [dissertation] St. Petersburg: VIR; 2019. [in Russian]

21. Porokhovinova E.A., Pavlov A.V., Kutuzova S.N., Brach N.B. VIR flax genetic collection for theoretical research and breeding (Geneticheskaya kollekciya l`na VIR dlya teoreticheskix issledovanij i selekcii). In: Gene pool and plant breeding: Proceeding of the II international conference, dedicated to the 80th anniversary of SRI PCB (Genofond i selekciya rastenij: tezisy` dokladov II mezhdunarodnoj konferencii, posvyashhennoj 80-letiyu SibNIIRS); 2016 March 29-31; Novosibirsk, Russia. Novosibirsk: SRI PCB - Branch of IC&G SB RAS; 2016. p.54. [in Russian]. URL: https://www.elibrary.ru/download/elibrary_30047216_57792947.pdf [дата обращения: 24.06.2023].

22. Porokhovinova E.A. Pavlov A.V., Kutuzova S.N., Brutch N.B. Interaction of genes controlling some morphological features of flax (Linum usitatissimum L.). Russian Journal of Genetics. 2019;55(11):1383-1397. DOI: 10.1134/S1022795419110103

23. Rose R.J. Sustaining Life: Maintaining chloroplasts and mitochondria and their genomes in plants. Yale Journal of Biology and Medicine. 2019;92(3):499-510.

24. Sakamoto W., Miyagishima S.Y. Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. The Arabidopsis Book. 2008;6:e0110. DOI: 10.1199/tab.0110

25. Shestakov S.V. Molecular genetics of photosynthesis. Soros Educational Journal. 1998;8:22-27. [in Russian]

26. Stern D.B., Hanson M.R., Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends in Plant Science. 2004;9(6):293-301. DOI: 10.1016/j.tplants.2004.04.001

27. Tikhomirova M.M. Genetic analysis (Geneticheskiy analiz). Leningrad: Leningrad University Publishing House; 1990. [in Russian]

28. Vaylo V., Lyakh V. Influence of lethal chlorophyll mutation of “albina” type on seedling characters in oil flax and its inheritance. Current Issues of Biology, Ecology and Chemistry. 2014;7(1):111-116. [in Ukrainian]

29. Yarantseva V.V., Lyakh V.A. Morphology of chloroplasts and pigment composition of leaves of different ages of chlorophyll mutants of flax. Plant Physiology and Genetics. 2015;47(3):236-243. [in Russian]


Review

For citations:


Porokhovinova E.A., Brutch N.B., Slobodkina A.A., Pavlov A.V. Flax lines mutant for chlorophyll coloration in the genetic collection of VIR. Plant Biotechnology and Breeding. 2023;6(4):14-27. (In Russ.) https://doi.org/10.30901/2658-6266-2023-4-o4

Views: 198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)