Preview

Plant Biotechnology and Breeding

Advanced search

A molecular genetic toolkit for the differential expression analysis of soybean β-conglycinin subunit genes

https://doi.org/10.30901/2658-6266-2024-3-o3

Abstract

The majority of proteins in soybean seeds are storage ones, including β-conglycinin and glycinin, which are necessary for seed germination. At the same time, they are the most valuable soy proteins used in the food industry, since their subunit composition and proportion of total protein can affect the quality of the resulting food product. β-conglycinins are trimers with different composition of subunits which are designated as α', α, β and encoded by the CG-1, CG-3, and CG-4 genes, respectively. The PCR analysis employed a model soybean cultivar ‘Sentyabrinka’. A complementary DNA synthesized from the RNA isolated from seeds of the studied cultivar served as a template. The in silico created pairs of primers for CG-1, CG-3, and CG-4 gene transcripts were used. As the result of PCR and the analysis of the obtained electrophoregrams, optimal annealing temperatures of primers for the CG-1, CG-3 and CG-4 genes were selected, at which only the characteristic fragment was observed. Thus, a molecular genetic toolkit has been developed for a comprehensive study of the qualitative and quantitative composition of soybean protein and can be used for further analysis of differential expression of genes responsible for the synthesis of β-conglycinin subunits.

About the Authors

A. A. Katrushenko
Federal Scientific Center «All-Russian Research Institute of Soybean»
Russian Federation

Anastasia A. Katrushenko, Research Assistant, Laboratory of Biotechnology, FRC ARSRIS

19, Ignat'evskoe Highway, Blagoveshchensk, Amur Region, 675000 Russia



P. D. Timkin
Federal Scientific Center «All-Russian Research Institute of Soybean»
Russian Federation

Pavel D. Timkin, Junior Researcher, Laboratory of Biotechnology, FRC ARSRIS 

19, Ignat'evskoe Highway, Blagoveshchensk, Amur Region, 675000 Russia



A. A. Penzin
Federal Scientific Center «All-Russian Research Institute of Soybean»
Russian Federation

Andrey A. Penzin, Researcher, Laboratory of Biotechnology, FRC ARSRIS 

19, Ignat'evskoe Highway, Blagoveshchensk, Amur Region, 675000 Russia



References

1. Adams G. A beginner’s guide to RT-PCR, qPCR and RT-qPCR. The Biochemist. 2020;42(3):48-53. DOI: 10.1042/BIO20200034

2. Degen H.-J., Deufel A., Eisel D., Grünewald-Janho S., Keesey J. (eds). PCR applications manual. Roche Molecular Biochemicals. 3rd ed. Mannheim, Germany: Roche Applied Science; 2006.

3. Fukushima D. Soy proteins. In: G.O. Phillips, P.A. Williams (eds). Handbook of Food Proteins. Woodhead Publishing Limited; 2011. p.210-232. DOI: 10.1533/9780857093639.210

4. Green M.R, Sambrook J. Polymerase Chain Reaction (PCR). Cold Spring Harbor Protocols. 2019;6:436-456. DOI: 10.1101/pdb.top095109

5. Hooker J.C., Nissan N., Luckert D., Charette M., Zapata G., Lefebvre F., Mohr R.M., Daba K.A., Warkentin T.D., Hadinezhad M., Barlow B., Hou A., Golshani A., Cober E.R., Samanfar B. A multi-year, multi-cultivar approach to differential expression analysis of high- and low-protein soybean (Glycine max). International journal of molecular sciences. 2023;24(1):222. DOI: 10.3390/ijms24010222

6. Jones S.I., Vodkin L.O. Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One. 2013;8(3):e59270. DOI: 10.1371/journal.pone.0059270

7. Kaczmarczyk A., Bowra S., Elek Z., Vincze E. Quantitative RT-PCR based platform for rapid quantification of the transcripts of highly homologous multigene families and their members during grain development. BMC Plant Biology. 2012;12:184. DOI: 10.1186/1471-2229-12-184

8. Noma S., Kawaura K., Hayakawa K., Abe C., Tsuge N., Ogihara Y. Comprehensive molecular characterization of the α/β-gliadin multigene family in hexaploid wheat. Molecular Genetics and Genomics. 2016;291(1):65-77. DOI: 10.1007/s00438-015-1086-7

9. Peng L., Qian L., Wang M., Liu W., Song X., Cheng H., Yuan F., Zhao M. Comparative transcriptome analysis during seeds development between two soybean cultivars. PeerJ. 2021;9:e10772. DOI: 10.7717/peerj.10772

10. Penzin A.A., Timkin P.D. In silico design of primers for profiling spare soy proteins. Journal of Bioinformatics and Genomics. 2023;3(21):1-5. DOI: 10.18454/jbg.2023.21.4

11. Qin P., Wang T., Luo Y. A review on plant-based proteins from soybean: Health benefits and soy product development. Journal of Agriculture and Food Research. 2022;7(12):100265. DOI: 10.1016/j.jafr.2021.100265

12. Rodríguez A., Rodríguez M., Córdoba J.J., Andrade M.J. Design of primers and probes for quantitative real-time PCR methods. In: Methods in Molecular Biology. 2015. Vol. 1275. p.31-56. DOI: 10.1007/978-1-4939-2365-6_3

13. Siddique S., Mustafa S.Е., Saggo A.A., Amam M. Physiological and nutraceutical properties of soybean (Glycine max L.). In: J.C. Jimenez-Lopez, J. Escudero-Feliu. Soybean Crop – Physiological, Genetic and Nutraceutical Aspects. 2024. DOI: 10.5772/intechopen.113864

14. SoyBase. Integrating Genetics and Genomics to Advance Soybean Research Available from: https://soybase.org/ [accessed Jun. 24, 2024]

15. Sui X., Zhang T., Jiang L. Soy protein: molecular structure revisited and recent advances in processing technologies. Annual Review of Food Science and Technology. 2021;12(1):119-147. DOI: 10.1146/annurev-food-062220-104405

16. Tang C. Nanostructures of soy proteins for encapsulation of food bioactive ingredients. In: S.M. Jafari (ed.). Biopolymer Nanostructures for Food Encapsulation Purposes. Academic Press; 2019. Vol. 1. p.247-285. DOI: 10.1016/b978-0-12-815663-6.00010-0

17. Van Den Berg L.A., Mes J.J., Mensink M., Wanders A.J. Protein quality of soy and the effect of processing: a quantitative review. Frontiers in Nutrition. Sec. Nutrition and Food Science Technology. 2022;9. DOI: 10.3389/fnut.2022.1004754

18. Wang T. Qin G.-X., Sun Z.-W., Zhao Y. Advances of research on glycinin and β-conglycinin: A review of two major soybean allergenic proteins. Critical Reviews in Food Science and Nutrition. 2014;54(7):850-862. DOI: 10.1080/10408398.2011.613534

19. Wiederstein M., Baumgartner S., Lauter K. Soybean (Glycine max) allergens – a review on an outstanding plant food with allergenic potential. The American Chemical Society Food Science & Technology. 2023;3(3):363-378. DOI: 10.1021/acsfoodscitech.2c00380

20. Yang A., Yu X., Zheng A., James A.T. Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4. Food Chemistry. 2016:210:148-155. DOI: 10.1016/j.foodchem.2016.04.095

21. Yoshino M., Kanazawa A., Tsutsumi K., Nakamura I., Shimamoto Y. Structure and characterization of the gene encoding α subunit of soybean β-conglycinin. Genes & Genetic Systems. 2001;2(76):99-105. DOI: 10.1266/ggs.76.99

22. Yoshino M, Kanazawa A, Tsutsumi K, Nakamura I, Takahashi K, Shimamoto Y. Structural variation around the gene encoding the α subunit of soybean β-conglycinin and correlation with the expression of the α subunit. Breeding Science. 2002;52:285-292. DOI: 10.1270/jsbbs.52.285

23. Zhang S., Du H., Ma Y., Li H., Kan G., Yu D. Linkage and association study discovered loci and candidate genes for glycinin and β-conglycinin in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics. 2021;134(4):1201-1215. DOI: 10.1007/s00122-021-03766-6

24. Zhao Y., Naren G., Qiang J., Qin G., Bao N., Farouk M.H. Identification of allergic epitopes of soybean β-conglycinin in different animal species. Frontiers in veterinary science. 2021;7:599546. DOI: 10.3389/fvets.2020.599546


Supplementary files

Review

For citations:


Katrushenko A.A., Timkin P.D., Penzin A.A. A molecular genetic toolkit for the differential expression analysis of soybean β-conglycinin subunit genes. Plant Biotechnology and Breeding. 2024;7(3):53-60. (In Russ.) https://doi.org/10.30901/2658-6266-2024-3-o3

Views: 224


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)