DNA polymorphism in loci associated with the adaptation of barley to environmental conditions, when comparing seed samples from archaeological excavations of the 12th century with the VIR collection accessions of different geographical origin
https://doi.org/10.30901/2658-6266-2024-2-o6
Abstract
When studying the DNA polymorphism of ancient seeds from archaeological excavations, and comparing them with modern ones, it is possible, depending on the evolutionary significance/neutrality of the identified differences, to either find traces of adaptation of genotypes used in ancient times to unfavorable environmental conditions, or to clarify the origin of the samples, establishing additional evidence of trade and economic ties between different regions in different eras. The purpose of this work was to study the DNA polymorphism by comparing the 12th-century barley seeds from the Usvyaty settlement of the Pskov Region and VIR collection accessions of different geographical origin using the CHI and ELF3 gene fragments sequencing data. Of the 18 polymorphic SNP loci identified in the studied genes during the analysis of the barley samples under study, seven SNPs were from the regions amenable for resequencing in ancient DNA samples. The identified allelic changes in those seven SNP loci were neutral and did not lead to amino acid substitutions, therefore they can be used for a comparative analysis of the sample origin. The haplotype revealed in ancient barley based on the seven studied SNPs did not completely coincide with any of the studied accessions from the VIR collection. At the same time, rare alleles showed similarities with a Belarusian cultivar ‘Krinichny’, and the frequently occurring ones with several accessions of H. vulgare L. of different origin (Sweden, Denmark, Armenia), as well as with H. spontaneum (K. Koch) Thell.
Keywords
About the Authors
T. V. SemiletRussian Federation
Tatiana V. Semilet, Junior Research Associate, Laboratory of Postgenomic Research, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
N. A. Shvachko
Russian Federation
Natalia A. Shvachko, Cand. Sci. (Biology), Leading Researcher, Head, Laboratory of Postgenomic Research, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
O. N. Kovaleva
Russian Federation
Olga N. Kovaleva, Cand. Sci. (Biology), Leading Researcher, Department of Genetic Resources of Oats, Rye, Barley, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
L. Yu. Shipilina
Russian Federation
Liliya Yu. Shipilina, Cand. Sci. (Biology), Senior Researcher, Laboratory of bioresources monitoring and archaeobotany, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
E. K. Khlestkina
Russian Federation
Elena K. Khlestkina, Dr. Sci. (Biology), Professor of the Russian Academy of Sciences (RAS), Director, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
References
1. Boden S.A., Weiss D., Ross J.J., Davies N.W., Trevaskis B., Chandler P.M., Swain S.M. EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T Expression. The Plant Cell. 2014;26(4):1557-1569. DOI: 10.1105/tpc.114.123794
2. Deng W., Clausen J., Boden S., Oliver S.N., Casao M.C., Ford B., Anderssen R.S., Trevaskis B. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings. PLOS ONE. 2015;10(6):e0129781. DOI: 10.1371/journal.pone.0129781
3. Druka A., Kudrna D., Rostoks N., Brueggeman R., von Wettstein D., Kleinhofs A. Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene. 2003;302(1–2):171-178. DOI: 10.1016/S0378-1119(02)01105-8
4. Huang H., Gehan M.A., Huss S.E., Alvarez S., Lizarraga C., Gruebbling E.L., Gierer J., Naldrett M.J., Bindbeutel R.K., Evans B.S., Mockler T.C., Nusinow D.A. Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant Direct. 2017;1(4):e00018. DOI: 10.1002/pld3.18
5. Khlestkina E., Salina E., Matthies I., Leonova I., Börner A., Röder M. Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley. Euphytica. 2011;179:333-341. DOI: 10.1007/s10681-010-0337-2
6. Khlestkina E.K. The adaptive role of flavonoids: emphasis on cereals. Cereal Research Communications. 2013;41(2):185-198. DOI: 10.1556/CRC.2013.0004
7. Khlestkina E.K., Shoeva O.Y., Gordeeva E.I. Flavonoid biosynthesis genes in wheat. Russian Journal of Genetics: Applied Research. 2015;5(3):268-278. DOI: 10.1134/S2079059715030077
8. Lu Y., Rausher M.D. Evolutionary rate variation in anthocyanin pathway genes. Molecular Biology and Evolution. 2003;20(11):1844-1853. DOI: 10.1093/molbev/msg197
9. Lukyanova M.V., Ilyina N.V., Ivanova N.S., Khokhlova G., Ivanova O.A., Lukina N.I., Tyulina N.R., Anikina L.V., Bogdanova G.M., Ivanova N.N., Nikitina N.D., Terentyeva I.A. (comp.). Catalogue of the VIR global collection. Iss. 632. Barley. Source material for breeding in the Non-Black Earth Zone of Russia (Yachmen'. Iskhodnyi material dlya selektsii v Nechernozemnoy zone Rossii). St. Petersburg: VIR; 1992. [in Russian]
10. McClung C.R. Circadian сlock components offer targets for crop domestication and improvement. Genes (Basel). 2021;12(3):374. DOI: 10.3390/genes12030374
11. Okonechnikov K., Golosova O., Fursov M.; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166-1167. DOI: 10.1093/bioinformatics/bts091
12. Pääbo S., Higuchi R.G., Wilson A.C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. The Journal of Biological Chemistry. 1989;264(17):9709-9712. DOI: 10.1016/S0021-9258(18)81710-0
13. Peukert M., Weise S., Röder M.S., Matthies I.E. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley. BMC Genetics. 2013;14:97. DOI: 10.1186/1471-2156-14-97
14. Poinar H.N., Kuch M., Sobolik K.D., Barnes I., Stankiewicz A.B., Kuder T., Spaulding W.G., Bryant V.M., Cooper A., Pääbo S. A molecular analysis of dietary diversity for three archaic Native Americans. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(8):4317-4322. DOI: 10.1073/pnas.061014798
15. Rausher M.D., Lu Y., Meyer K. Variation in constraint versus positive selection as an explanation for evolutionary rate variation among anthocyanin genes. Journal of Molecular Evolution. 2008;67(2):137-144. DOI: 10.1007/s00239-008-9105-5
16. Rausher M.D., Miller R.E., Tiffin P. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Molecular Biology and Evolution. 1999;16(2):266-274. DOI: 10.1093/oxfordjournals.molbev.a026108
17. Semilet T., Shvachko N., Smirnova N., Shipilina L., Khlestkina E. Using DNA markers to reconstruct the lifetime morphology of barley grains from carbonized cereal crop remains unearthed at Usvyaty Settlement. Biological Communications. 2023;68(1):3-9. DOI: 10.21638/spbu03.2023.101
18. Semilet T.V., Smirnova N.V., Shvachko N.A., Kovaleva O.N., Khlestkina E.K. Restoration of the spike architectonics in ancient barley excavated at the twelfth-century settlement of Usvyaty. Proceedings on Applied Botany, Genetics and Breeding. [preprint] 2024. [in Russian]
19. Shoeva O.Y., Glagoleva A.Y., Khlestkina E.K. The factors affecting the evolution of the anthocyanin biosynthesis pathway genes in monocot and dicot plant species. BMC Plant Biology. 2017;17(Suppl 2):256. DOI: 10.1186/s12870-017-1190-4
20. Shoeva O.Y., Kukoeva T.V., Börner A., Khlestkina E.K. Barley Ant1 is a homolog of maize C1 and its product is part of the regulatory machinery governing anthocyanin synthesis in the leaf sheath. Plant Breeding. 2015;134(4):400-405. DOI: 10.1111/pbr.12277
21. Shoeva O.Yu., Strygina K.V., Khlestkina E.K. Genes determining the synthesis of flavonoid and melanin pigments in barley. Vavilov Journal of Genetics and Breeding. 2018;22(3):333-342. [in Russian]. DOI: 10.18699/VJ18.369
22. Smith L. Genetics and cytology of barley. The Botanical Review. 1951;17:133-202. DOI: 10.1007/BF02861800
23. Tester M., Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327(5967):818-822. DOI: 10.1126/science.1183700
24. Vikhorev A.V., Strygina K.V., Khlestkina E.K. Duplicated flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase genes in barley genome. PeerJ. 2019;7(1):e6266. DOI: 10.7717/peerj.6266
25. Zakhrabekova S., Gough S.P., Braumann I., Müller A.H., Lundqvist J., Ahmannet K., Dockter C., Matyszczak I., Kurowska M., Druka A., Waugh R., Graner A., Stein N., Steuernagel B., Lundqvist U., Hansson M. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(11):4326-4331. DOI: 10.1073/pnas.1113009109
Review
For citations:
Semilet T.V., Shvachko N.A., Kovaleva O.N., Shipilina L.Yu., Khlestkina E.K. DNA polymorphism in loci associated with the adaptation of barley to environmental conditions, when comparing seed samples from archaeological excavations of the 12th century with the VIR collection accessions of different geographical origin. Plant Biotechnology and Breeding. 2024;7(2):67-74. (In Russ.) https://doi.org/10.30901/2658-6266-2024-2-o6