Изучение генетического разнообразия образцов Brassica rapa L. коллекции ВИР на основе анализа полиморфизма ДНК в микросателлитных локусах
https://doi.org/10.30901/2658-6266-2024-2-o8
Аннотация
Вид Brassica rapa L. включает в себя листовые и корнеплодные культуры, выращиваемые во многих странах мира. Уточнение генетических взаимосвязей и структуры популяции позволяет точнее подбирать формы для дальнейшей селекции с использованием генетически отличимых форм. Коллекция B. rapa собранная в ВИР, состоит из 1750 образцов, представляющих различные подвиды и страны происхождения, и является хорошим инструментом для изучения многообразия культурных форм с использованием молекулярно-генетических методов. Целью исследования было провести оценку генетического разнообразия образцов коллекции B. rapa и уточнить внутривидовые взаимоотношения при помощи молекулярных маркеров. Молекулярный скрининг 80 образцов с использованием 16 микросателлитных маркеров выявил аллели размером от 85 до 460 пн при среднем 7,8 числе аллелей на локус. Средний показатель индекса информационного полиморфизма (PIC) составил 0,278, а показатель ожидаемой гетерозиготности (H) в среднем составил 0,35. Идентифицированы редкие и уникальные аллели для образцов пекинской капусты (к-63 и к-108), образцов японских листовых овощей (к-217 и к-335) и репы (к-738). Выявлены аллели локусов BRMS-007 (123 пн) и BRMS-034 (136 пн) характерные только для образцов реп, сурепиц и сарсонов. Проведён анализ in silico пар праймеров для уточнения размеров ожидаемых фрагментов согласно референсному геному CAAS_Brap_v3.01 линии пекинской капусты Chiifu-401-42. Филогенетический анализ проводили с использованием программы STRUCTURE, что привело к распределению образцов на четыре кластера, согласно ботанической классификации: пекинская капуста; китайская и розеточная капуста; японские листовые овощи, ноздреватая, пурпурная, японская капуста и гибридные формы; образцы репы и сурепицы.
Об авторе
Ф. А. БеренсенРоссия
Федор Алексеевич Беренсен, заведующий лабораторией, Лаборатория комплексной оценки генетических ресурсов растений, ВИР
Список литературы
1. Amiryousefi A., Hyvönen J., Poczai P. iMEC: Online Marker Efficiency Calculator. Applications in Plant Sciences. 2018;6(6):e1159. DOI: 10.1002/aps3.1159
2. Антонова О.Ю., Клименко Н.С., Рыбаков Д.А., Фомина Н.А., Желтова В.В., Новикова Л.Ю., Гавриленко Т.А. SSR-анализ современных российских сортов картофеля с использованием ДНК номенклатурных стандартов. Биотехнология и селекция растений. 2020;3(4):77-96. DOI: 10.30901/2658-6266-2020-4-o2
3. Артемьева А.М. Соловьева А.Е., Беренсен Ф.А., Кочерина Н.В., Чесноков Ю.В. Эколого-генетическая оценка морфологических и биохимических признаков качества у образцов коллекции Brassica rapa L. ВИР. Сельскохозяйственная биология. 2017;52(1):129-142. DOI: 10.15389/agrobiology.2017.1.129rus
4. Беренсен Ф.А. Артемьева А.М., Чесноков Ю.В. Молекулярно-филогенетический анализ образцов стержневой коллекции B. rapa L. ВИР. Плодоводство и ягодоводство России. 2016;47:46-49.
5. Brassica.info, 2024. Reference annotated genomes. © University of Western Australia Centre for Applied Bioinformatics. Available from: http://www.brassica.info/genome/genomes.html [accessed Apr. 10, 2024]
6. Celucia S., De La Pena R., Villa N. Genetic Characterization of Brassica rapa chinensis L., B. rapa parachinensis (L.H. Bailey) Hanelt, and B. oleracea alboglabra (L.H. Bailey) Hanelt Using SSR Markers. The Philippine Journal of Science. 2009;138(2):141-152.
7. Chen R., Hara T., Ohsawa R., Yoshioka Y. Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction. Breeding Science. 2017;67(3):239-247. DOI: 10.1270/jsbbs.16192
8. Chen R., Shimono A., Aono M., Nakajima N., Ohsawa R., Yoshioka Y. Genetic diversity and population structure of feral rapeseed (Brassica napus L.) in Japan. PLoS One. 2020;16:15(1):e0227990. DOI: 10.1371/journal.pone.0227990
9. Cui X., Dong Y., Hou X., Cheng Y., Zhang J., Jin M. Development and characterization of microsatellite markers in Brassica rapa ssp. chinensis and transferability among related species. Agricultural Sciences in China. 2008;7(1):19-31. DOI: 10.1016/S1671-2927(08)60018-8
10. Dixon G., Wells R. Vegetable Brassicas and related crucifers. 2nd ed. Boston, MA: CAB International; 2024. (Series: Crop Production Science in Horticulture). DOI: 10.1079/9781789249170.0000
11. Дорохов Д.В., Клоке Э. Быстрая и экономичная технология RAPD анализа растительных геномов. Генетика. 1997;33:358-365.
12. Фатеев Д.А. Артемьева А.М. Молекулярно-генетическая характеристика образцов брокколи (Brassica oleracea L. var. italica Plenck) коллекции ВИР. Труды по прикладной ботанике, генетике и селекции. 2020;181(3):91-99. DOI: 10.30901/2227-8834-2020-3-91-99
13. Online Marker Efficiency Calculator. Available from: https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.1159 [accessed Apr. 10, 2024]
14. Gomez-Campo C., Prakash S. 2 Origin and domestication. Developments in Plant Genetics and Breeding. 1999;4:33-58. DOI: 10.1016/S0168-7972(99)80003-6
15. Hatakeyama К. Horisaki A., Niikura S., Narusaka Y., Abe H., Yoshiaki H., Ishida M., Fukuoka H., Matsumoto S. Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L. Genome. 2010;53(4):257-265. DOI: 10.1139/G10-001
16. Izzah N.K., Lee J., Jayakodi M., Perumal S., Jin M., Park B.S., Ahn K., Yang T.J. Transcriptome sequencing of two parental lines of cabbage (Brassica oleracea L. var. capitata L.) and construction of an EST-based genetic map. BMC Genomics. 2014;15(1):149. DOI: 10.1186/1471-2164-15-149
17. Kim S., Song Y., Lee J., Choi S., Dhandapani V., Jang C., Lim Y., Han T. Identification of the BrRHP1 locus that confers resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis) and development of linked molecular markers. Theoretical and Applied Genetics. 2011;123(7):1183-1192. DOI: 10.1007/s00122-011-1658-9
18. Kresovich S., Szewc-McFadden A., Bliek S., McFerson J. Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. Theoretical and Applied Genetics. 1995;91:206-211. DOI: 10.1007/BF00220879
19. Kubo N., Onnazaka K., Mizuno S., Tsuji G.. Classification of "nabana" (Brassica rapa) cultivars and landraces based on simple sequence repeat markers. Breeding Science. 2019a;69(1):179-185. DOI: 10.1270/jsbbs.18126
20. Kubo N., Ueoka H., Satoh S. Genetic relationships of heirloom turnip (Brassica rapa) cultivars in Shiga Prefecture and other regions of Japan: The Horticulture Journal. 2019b;88(4):471-480. DOI: 10.2503/hortj.UTD-071
21. Küçük R., Sevindik E., Çayır M., Murathan Z. Genetic variation among Brassica rapa subsp. rapa genotypes growing in Malatya/Türkiye. Genetic Resources and Crop Evolution. 2024. DOI: 10.1007/s10722-024-01943-2
22. Landry B., Hubert N., Crete R., Chiang M., Lincoln S., Etoh T. A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome. 1992;35(3):409-420. DOI: 10.1139/g92-061
23. Li P., Su T., Zhao X., Wang W., Zhang D., Yu Y., Bayer P., Edward D., Yu S., Zhang F. Assembly of the non-heading pak choi genome and comparison with the genomes of heading Chinese cabbage and the oilseed yellow sarson. Plant Biotechnology Journal. 2021;19(5):966-976. DOI: 10.1111/pbi.13522
24. Lowe A., Jones A., Raybould A., Trick M., Moule C., Edwards K. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Molecular Ecology Notes. 2002;2:7-11. DOI: 10.1046/j.1471-8286.2002.00126.x
25. Lowe A., Moul C., Trick M., Edwards K. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics. 2004;(108):1103-1112. DOI: 10.1007/s00122-003-1522-7
26. Mekonnen T., Haileselassie T., Kaul T., Sharma M., Geleta B., Tesfaye K. Molecular screening of Zymoseptoria tritici resistance genes in wheat (Triticum aestivum L.) using tightly linked simple sequence repeat markers. European Journal of Plant Pathology. 2019;155:593-614. DOI: 10.1007/s10658-019-01795-y
27. Pankin A., Khavkin E. Genome-specific SCAR markers help solve taxonomy issues: a case study with Sinapis arvensis (Brassiceae, Brassicaceae). American Journal of Botany. 2011;98(3):54-57. DOI: 10.3732/ajb.1000422
28. Phukan A., Barua P.K., Sarma R.N., Borah N. Inter and intra population diversity analysis in toria (Brassica rapa L.) using SSR marker. Indian journal of genetics and plant breeding. 2020;80(01):107-111.
29. Plieske J., Struss D. Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species. Theoretical and Applied Genetics. 2001;102:689-694. DOI: 10.1007/s001220051698
30. Qi X., An H., Ragsdale A., Hall T., Gutenkunst R., Pires J., Barker M. Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Molecular Ecology. 2017;26(13):3373-3388.
31. Saini P., Sirari A., Gnanesh B., Mandahal K., Ludhar N., Nagpal S., Patel S., Akhatar J., Saini P., Pratap A., Bains T., Yadav S. Assessment of simple sequence repeat (SSR) markers derived from whole-genome sequence (WGS) of mungbean (Vigna radiata L. Wilczek): cross-species transferability and population genetic studies in Vigna species. Horticulturae. 2024;10(1):34. DOI: 10.3390/horticulturae10010034
32. Singh L., Nanjundan J., Sharma D., Singh K., Parmar N., Jain R., Kumar A. Agro-morphological traits and SSR markers reveal genetic variations in germplasm accessions of Indian mustard – an industrially important oilseed crop. Heliyon. 2022;8(12):e12519. DOI: 10.1016/j.heliyon.2022.e12519
33. Singh S., Singh V., Ambawat S., Dubey M., Singh D. Screening and estimation of allelic differentiation in Indian mustard using SSR markers for background selection. International Journal of Current Microbiology and Applied Sciences. 2017;6(9):2506-2516. DOI: 10.20546/ijcmas.2017.609.308
34. Soengas P., Cartea M., Francisco M., Lema M., Velasco P. Genetic structure and diversity of a collection of Brassica rapa subsp. rapa L. revealed by simple sequence repeat markers. The Journal of Agricultural Science. 2011;149(5):617-624. DOI: 10.1017/S002185961100013X
35. Suwabe K., Iketani H., Nunome T,. Kage T., Hirai M. Isolation and characterization of microsatellites in Brassica rapa L. Theoretical and Applied Genetics. 2002;104(6-7):1092-1098. DOI: 10.1007/s00122-002-0875-7
36. Suwabe K. Iketani H., Nunome T., Ohyama A., Hirai M., Fukuoka H. Characteristics of Microsatellites in Brassica rapa Genome and their Potential Utilization for Comparative Genomics in Cruciferae. Breeding Science. 2004;54(2):85-90. DOI: 10.1270/jsbbs.54.85
37. Suwabe K., Tsukazaki H., Iketani H., Hatakeyama K, Kondo M., Fujimura M., Nunome T., Fukuoka H., Hirai M., Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics. 2006;173(1):309-319. DOI: 10.1534/genetics.104.038968.
38. Thakur A., Singh K., Parmar N. Sharma D., Mishra D., Singh L., Nanjundan J., Yadav S. Population structure and genetic diversity as revealed by SSR markers in Ethiopian mustard (Brassica carinata A. Braun): a potential edible and industrially important oilseed crop. Genetic Resources and Crop Evolution. 2021;68:321-333. DOI: 10.1007/s10722
39. Wang X., Wang H., Wang J., Sun R., Wu J., Liu S., Bai Y., Mun J-H., Bancroft I., Cheng F., Huang S., Li X., Hua W., Wang J., Wang X., Freeling M., Pires J.C., Paterson A.H., Chalhoub B., Wang B., Hayward A., Sharpe A.G., Park B.-S., Weisshaar B., Liu B., Li B., Liu B., Tong C., Song C., Duran C., Peng C., Geng C, Koh C., Lin C., Edwards D., Mu D., Shen D., Soumpourou E., Li F., Fraser F., Conant G., Lassalle G., King G.J., Bonnema G., Tang H., Wang H., Belcram H., Zhou H., Hirakawa H., Abe H., Guo H., Wang H., Jin H., Parkin I.A.P., Batley J., Kim J.-S., Just J., Li J., Xu J., Deng J., Kim J.A., Li J., Yu J., Meng J., Wang J., Min J., Poulain J., Wang J., Hatakeyama K., Wu K., Wang L., Fang L., Trick M., Links M.G., Zhao M., Jin M., Ramchiary N., Drou N., Berkman P.J., Cai Q., Huang Q., Ruiqiang Li R., Tabata S., Cheng S., Zhang S., Zhang S., Huang S., Sato S., Sun S., Kwon S.-J., Choi S.-R., Lee T.-H., Fan W., Zhao X., Tan X., Xu X., Wang Y., Qiu Y., Yin Y., Li Y., Du Y., Liao Y., Lim Y., Narusaka Y., Wang Y., Wang Z., Li Z., Wang Z., Xiong Z., Zhang Z. The Brassica rapa Genome Sequencing Project Consortium. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics. 2011;43:1035-1039. DOI: 10.1038/ng.919
40. VegMarks – a DNA marker database for vegetables © 2006-2020 Institute of Vegetable and Floriculture Science, NARO. Available from: https://vegmarks.nivot.affrc.go.jp/ [accessed Apr. 10, 2024]
Рецензия
Для цитирования:
Беренсен Ф.А. Изучение генетического разнообразия образцов Brassica rapa L. коллекции ВИР на основе анализа полиморфизма ДНК в микросателлитных локусах. Биотехнология и селекция растений. 2024;7(2):53-66. https://doi.org/10.30901/2658-6266-2024-2-o8
For citation:
Berensen F.A. A study of genetic diversity of Brassica rapa L. accessions from the VIR collection by analyzing DNA polymorphism in microsatellite loci. Plant Biotechnology and Breeding. 2024;7(2):53-66. (In Russ.) https://doi.org/10.30901/2658-6266-2024-2-o8