Preview

Plant Biotechnology and Breeding

Advanced search

Proteolytic degradation of seed proteins of vetch species (Vicia L. subgenus Vicia) of section Peregrinae Kupicha during SDS-electrophoresis and its prevention

https://doi.org/10.30901/2658-6266-2024-3-o2

Abstract

Background. Due to its simplicity and good reproducibility, SDS-electrophoresis of seed proteins is widely used for investigating the gene pool of legumes and other plants, for species and varietal identification, analyzing the intraspecific variability, and registering collection material. The data obtained by this method agree well with the DNA analysis results complement them. Typically, legume seed proteins, including representatives of the genus Vicia L., show clear informative SDS electrophoretic profiles. When analyzing seed accessions of vetch species of the section Peregrinae Kupicha using standard approaches previously developed at VIR and approved by ISTA (the International Seed Testing Association), clear electrophoretic protein profiles could not be obtained for many accessions. This called into question the applicability of standard approaches to identifying vetch species in the section Peregrinae. The objective of the work was to clarify the nature of seed proteins degradation in representatives of the Peregrinae section and to find ways to prevent it to ensure the possibility of carrying out species identification and registration of all accessions in the vetch collection using a unified approach. Material and methods. Seed proteins of a number of vetch species Vicia L. from sections Bithynicae (B. Fedtsch.) Maxted, Hypechusa (Alef.) Aschers. et Graebner, Microcarinae Maxted and Peregrinae, members of the subgenus Vicia, were analyzed by SDS-electrophoresis using the standard method of protein extraction from flour with 0.025 M Tris-glycine buffer pH 8.3 at room temperature and its modifications, including heating the extract at 80°C or 100°C with or without the addition of 2-mercaptoethanol, as well as the addition of cysteine and serine protease inhibitors. Results and discussion. An analysis of seed proteins of representatives of most sections of the subgenus Vicia yielded informative species-specific protein profiles, whereas species of the section Peregrinae were characterized by the protein profiles, which indicated protein degradation, and species of this section differed in the frequency of such profile occurrence. While such profiles were obtained for all seeds of seven accessions of V. aintabensis Boiss & Hausskn. ex Boiss differing in geographical origin, year and place of regeneration, and 12 out of 13 of V. peregrina  L. accessions demonstrated profiles of partially or completely degraded proteins, complete seed protein profiles were obtained for six out of nine V. michauxii Sprengel accessions. A change in conditions for protein isolation, namely replacement of their extraction from flour with Tris-glycine buffer pH 8.3 at room temperature with extraction in the same buffer by a short-term heating at 100°C in the presence of 2-mercaptoethanol, made it possible to obtain complete protein profiles for all accessions representing the section Peregrinae. The protein profiles of representatives of other vetch sections, as well as the profile of soybean proteins used as a standard for legume species identification, did not differ from the original ones under the modified conditions. Conclusions. The obtained results suggest that protein degradation in species of the Peregrinae section is associated with the abnormal activity of endogenous seed proteases under standard protein extraction conditions, and this trait is determined genotypically. A new modification of the method for isolating proteins from seeds makes it possible to apply the generally accepted approaches based on SDS-electrophoresis in the analysis of the gene pool of the Peregrinae section of the subgenus Vicia, as well as other vetch species.

About the Authors

A. V. Konarev
All-Russian Institute of Plant Protection
Russian Federation

Alexander V. Konarev, Dr. Sci. (Biology), Chief Specialist, Laboratory of Agricultural Entomology, VIZR

3, Podbelskogo Highway, Pushkin, St. Petersburg, 196608 Russia



E. E. Eggi
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elly E. Eggi, Cand. Sci. (Biology), Leading Specialist, Department of Biochemistry and Molecular Biology,  VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



T. G. Aleksandrova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Tatiana G. Aleksandrova, Researcher, Department of Genetic Resources of Grain Legumes, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



References

1. Ali H.B., Osman S.A. Genetic relationship study of some Vicia species by FISH and total seed storage protein patterns. Journal of Genetic Engineering and Biotechnology. 2020;18(1):37. DOI: 10.1186/s43141-020-00054-6

2. Barratt D.H.P. Cultivar identification of Vicia faba (L.) by sodium dodecyl sulphate – polyacrylamide gel electrophoresis of seed globulins. Journal of the Science of Food and Agriculture.1980;31(8):813-819. DOI: 10.1002/jsfa.2740310811

3. Bechkri S., Medoukali I., Khelifi D. Ecogeographic variability and genetic diversity associated with seed albumins, globulins and prolamins patterns in Vicia taxa from Algeria. Botanical studies. 2017;58:1-5. DOI: 10.1186/s40529-017-0177-7

4. Bobkov S.V., Bashkirova K.A. Study of polymorphism of storage proteins in parents and hybrids of wild and cultivated peas. Zemledelie. 2022;(5):35-39. [in Russian]. DOI: 10.24412/0044-3913-2022-5-35-39

5. Bosmali I., Lagiotis G., Haider N., Osathanunkul M., Biliaderis C., Madesis P. DNA-based identification of Eurasian Vicia species using chloroplast and nuclear DNA barcodes. Plants. 2022;11(7):947. DOI: 10.3390/plants11070947

6. Caputo P., Frediani M., Gelati M.T., Venora G., Cremonini R., Ruffini Castiglione M. Karyological and molecular characterisation of subgenus Vicia (Fabaceae). Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology. 2013;147(4):1242-1252. DOI: 10.1080/11263504.2013.861532

7. Dhull S.B., Kidwai M.K., Noor R., Chawla P., Rose P.K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science. 2022;4(3):e129. DOI: 10.1002/leg3.129

8. Dorrian K., Mkhabela M., Sapirstein H., Bullock P. Effects of delayed harvest on wheat quality, gluten strength, and protein composition of hard red spring wheat. Cereal Chemistry. 2023;100(1):196-212. DOI: 10.1002/cche.10637

9. Eggi E.E. Identification of cultivars of narrow-leaved lupine (Lupinus angustifolius L.) using the electrophoretic profile of polypeptides in seed proteins: guidelines (Identifikatsiya sortov lyupina uzkolistnogo (Lupinus angustifolius L.) s ispol'zovaniem elektroforeticheskogo spektra polipeptidov belkov semyan: metodicheskiye ukazaniya). I.P. Gavrilyuk (ed). St. Petersburg: VIR; 2013. [in Russian]

10. Eggy E.E. Electrophoresis of seed proteins for the cultivar identification of high polimorphing crops on the example of eastern galega (Galega orientalis Lam.). Agrarnaya Rossiya = Agrarian Russia. 2015;(11):14-20. [in Russian]

11. Eggi E.E., Aleksandrova T.G. Determination of an unknown accession of common vetch for compliance with the variety Yubileinaya 110 according to morphology and electrophoresis of seed protein. Legumes and groat crops. 2019;4(32):71-81. [in Russian]. DOI: 10.24411/2309-348X-2019-11135

12. Eggi E.E., Aleksandrova T.G. Comparative characteristics of common vetch (Vicia sativa subsp. sativa) cultivars based on seed polypeptide patterns. In: V International Vavilov Conference : celebrating N.I. Vavilov’s 135th birthday: Abstracts; 2022 November 21-25; St. Petersburg, Russia. St. Peterburg: VIR; 2022. p.353-355. [in Russian]

13. El-Badan G.E., Amin A.W., Ashour F.M., El-Sadek L.M. Allele frequency and genetic diversity of some species of genus Vicia L. using SDS-PAGE technique. Egyptian Journal of Botany. 2021;61(2):491-511. DOI: 10.21608/ejbo.2021.47720.1579

14. Fischer J., Becker C., Hillmer S., Horstmann C., Neubohn B., Schlereth A., Senyuk V., Shutov A., Müntz K. The families of papain- and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental patterns, intracellular localization and functions in globulin proteolysis. Plant molecular biology. 2000;43:83-101. DOI: 10.1023/A:1006456615373

15. Frediani M., Caputo P., Venora G., Ravalli C., Ambrosio M., Cremonini R. Nuclear DNA contents, rDNAs, and karyotype evolution in Vicia subgenus Vicia: II. Section Peregrinae. Protoplasma. 2005;226:181-190. DOI: 10.1007/s00709-005-0114-6

16. Hasan A.A., Haddad D.A., Ali L.M. The phylogenetic relationships between species of Vicia L. based on morphological characteristics and proteins present in seeds. Asian Journal of Research in Botany. 2023;6(2):225-232. Available from: http://science.sdpublishers.org/id/eprint/1656/1/Hasan622023AJRIB106921.pdf [accessed Jul. 19, 2024].

17. Jaaska V., Leht M. Phylogenetic relationships between and within sections Hypechusa, Narbonensis and Peregrinae of genus Vicia (Fabaceae) based on evidence from isozymes and morphology. Central European Journal of Biology. 2007;2:137-155. DOI: 10.2478/s11535-007-0008-z

18. Kakhovskaya I.A., Rudakova A.S., Shutov A.D. Origin and evolution of legumains, Asn-specific seed proteinases. In: Proceedings of the 2nd International Conference «Agrophysical Trends: from Actual Challenges in Arable Farming and Crop Growing towards Advanced Technologies», devoted to Academician Eugene Ermakov; 2019 October 02-04; Saint Petersburg, Russia. St. Petersburg: Agrophysical Research Institute; 2019. p.358-362. [in Russian]. URL: https://www.agrophys.ru/Media/Default/Conferences/2019/sbornik_ARI_2019.pdf [дата обращения: 19.07.2024].

19. Khalik K.N.A., Al-Gohary I.H. Taxonomic relationships in some Vicia species from Egypt, based on seed morphology and SDS-PAGE of seed proteins. Acta Scientiarum. Biological Sciences. 2013;35(4):603-611. DOI: 10.4025/actascibiolsci.v35i4.19345

20. Konarev A.V. Digestive hydrolases of wheat bugs: properties, significance and possible ways to limit their activity. Plant Protection News. 2020;103(2):65-86. [in Russian]. DOI: 10.31993/2308-6459-2020-103-2-13279

21. Konarev Al.V., Fomicheva Yu.V. Cross analysis of the interaction of α-amylase and protease components of insects with protein inhibitors from wheat endosperm. Biochemistry (Moscow). 1991;56(4):419-427. Available from: https://www.researchgate.net/publication/235651743 [accessed Jul 19, 2024].

22. Konarev A.V., Lovegrove A. Novel detection methods used in conjunction with affinity chromatography for the identification and purification of hydrolytic enzymes or enzyme inhibitors from insects and plants. In: S. Magdeldin (ed.). Affinity Chromatography. London, UK: InTechOpen; 2012. p.187-210. Available from: https://www.intechopen.com/chapters/33056 [accessed Jul 19, 2024]. DOI: 10.5772/37618

23. Konarev A, Dolgikh V, Senderskiy I, Konarev A, Kapustkina A, Lovegrove A. Characterisation of proteolytic enzymes of Eurygaster integriceps Put. (Sunn bug), a major pest of cereals. Journal of Asia-Pacific Entomology. 2019a;22(1):379-385. DOI: 10.1016/j.aspen.2019.02.001

24. Konarev A.V., Kochetkov V.V., Bailey J.A., Shewry P.R. The detection of inhibitors of the Sclerotinia sclerotiorum (Lib.) de Bary extracellular proteinases in sunflower. Journal of Phytopathology. 1999;147(2):105-108. DOI: 10.1046/j.1439-0434.1999.147002105.x

25. Konarev A.V., Loskutov I.G., Shelenga T.V., Horeva V.I., Konarev Al.V. Plant genetic resources as an inexhaustible source of healthy food products. Agrarnaya Rossiya = Agrarian Russia. 2019b;(2):38-48. [in Russian]. DOI: 10.30906/1999-5636-2019-2-38-48

26. Konarev A.V., Tomooka N., Vaughan D.A. Proteinase inhibitor polymorphism in the genus Vigna subgenus Ceratotropis and its biosystematic implications. Euphytica. 2002;123:165-177. DOI: 10.1023/A:1014920309710

27. Konarev V.G. (ed.). Identification of varieties and registration of the gene pool of cultivated plants based on seed proteins (Identifikatsiya sortov i registratsiya genofonda kul’turnykh rasteniy po belkam semyan). St. Petersburg: VIR; 2000. [in Russian]

28. Kuerban A., Al-Ghafari A.B., ALGhamadi S.A., Syed F.Q., Mirza M.B., Mohammed F.A., Abulnaja K.O., Alshaibi H.F., Alsufiani H.M., Kumosani T.A., Al-Malki A.L., Moselhy S.S. Potential antiglycation, antioxidant and antiproliferative activities of Vicia faba peptides. Journal of Food Measurement and Characterization. 2020;14:2155-2162. DOI: 10.1007/s11694-020-00462-9

29. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. DOI: 10.1038/227680a0

30. Leht M, Jaaska V. Phylogenetic position of Vicia montbretii and Lens species in relation to Vicia subgenus Cracca (Fabaceae): morphological and isozyme evidence. Feddes Repertorium. Journal of Botanical Taxonomy and Geobotany. 2019;130(3):272-288. DOI: 10.1002/fedr.201800019

31. López-Román M.I., De la Rosa L., Marcos-Prado T., Ramírez-Parra E. Cross-species transferability of SSR markers for analyzing genetic diversity of different Vicia species collections. Agronomy. 2024;14(2):326. DOI: 10.3390/agronomy14020326

32. Maxted N. A phenetic investigation of Vicia L. subgenus Vicia (Leguminosae, Vicieae) Botanical Journal of the Linnean Society. 1993;111(2):155-182. DOI: 10.1006/bojl.1993.1013

33. Maxted N. A phenetic investigation of Vicia section Peregrinae Kupicha (Leguminosae, Papilionoideae, Vicieae). Edinburgh Journal of Botany. 1994;51(1):75-97. DOI: 10.1017/S0960428600001736

34. Mazin A.M., Eggi E. Comparative evaluation of red clover genotypes with the "Pskovskiy mestnyy dvuukosnyy" variety. Fodder Production. 2021;(6):16-21. [in Russian]. DOI: 10.25685/KRM.2021.35.75.001

35. Mirali N. The use of SDS-PAGE seed protein variability within and among accessions to predict the mating system of some Vicia species. Journal of Genetics and Breeding. 2005;59(3/4):253.

36. Mirali N, El-Khouri S, Rizq F. Genetic diversity and relationships in some Vicia species as determined by SDS-PAGE of seed proteins. Biologia Plantarum. 2007;51(4):660-666. DOI: 10.1007/s10535-007-0139-0

37. Müntz K. Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. Journal of Experimental Botany. 1996;47(5):605-622. DOI: 10.1093/jxb/47.5.605

38. Müntz K, Belozersky M.A., Dunaevsky Y.E., Schlereth A., Tiedemann J. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. Journal of Experimental Botany. 2001;52(362):1741-1752. DOI: 10.1093/jexbot/52.362.1741

39. Müntz K, Shutov A.D. Legumains and their functions in plants. Trends in Plant Science. 2002;7(8):340-344. DOI: 10.1016/S1360-1385(02)02298-7

40. Peršić V, Božinović I, Varnica I, Babić J, Španić V. Impact of fusarium head blight on wheat flour quality: examination of protease activity, technological quality and rheological properties. Agronomy. 2023;13(3):662. DOI: 10.3390/agronomy13030662

41. Piotrowicz-Cieślak A.I., Krupka M., Michalczyk D.J., Smyk B., Grajek H., Podyma W., Głowacka K. Physiological characteristics of field bean seeds (Vicia faba var. minor) subjected to 30 years of storage. Agriculture. 2020;10(11):545. DOI: 10.3390/agriculture10110545

42. Potokina E., Endo Y., Eggi E., Ohashi H. Electrophoretic patterns of seed proteins in the East Asian Vicia species (Leguminosae) and their systematic utility. Journal of Japanese Botany. 2003;78(1):29-37.

43. Potokina E., Vaughan D.A., Eggi E.E., Tomooka N. Population diversity of the Vicia sativa agg. (Fabaceae) in the flora of the former USSR deduced from RAPD and seed protein analyses. Genetic Resources and Crop Evolution. 2000;47:171-183. DOI: 10.1023/A:1008756420011

44. Ribeiro A.C., Teixeira A.R., Ferreira R.B. Characterization of globulins from common vetch (Vicia sativa L.). Journal of agricultural and food chemistry. 2004;52(15):4913-4920. DOI: 10.1021/jf049833p

45. Salehi B., Abu‐Reidah I.M., Sharopov F., Karazhan N., Sharifi‐Rad J., Akram M., Daniyal M., Khan F.S., Abbaass W., Zainab R., Carbone K., Fahmy N.M., Al-Sayed E., El-Shazly M., Lucarini M., Durazzo A., Santini A., Martorell M., Pezzani R. Vicia plants – A comprehensive review on chemical composition and phytopharmacology. Phytotherapy Research. 2021;35(2):790-809. DOI: 10.1002/ptr.6863

46. Schlereth A., Becker C., Horstmann C., Tiedemann J., Müntz K. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). Journal of Experimental Botany. 2000;51(349):1423-1433. DOI: 10.1093/jxb/51.349.1423

47. Scholz G., Manteufeel R., Müntz K., Rudolph A. Low‐molecular‐weight polypeptides of vicilin from Vicia faba L. are product of proteolytic breakdown. European journal of biochemistry. 1983;132(1):103-107. DOI: 10.1111/j.1432-1033.1983.tb07332.x

48. Shutov A.D., Blattner F.R., Kakhovskaya I.A., Müntz K. New aspects of the molecular evolution of legumains, Asn-specific cysteine proteinases. Journal of Plant Physiology. 2012;169(3):319-321. DOI: 10.1016/j.jplph.2011.11.005

49. Tarlakovskaya A.M., Eggi E.E., Gavriluyk I.P. Belyaeva Zh.I. (comp.). Identification of pea varieties by electrophoresis of seed proteins: guidelines (Identifikatsiya sortov gorokha metodom elektroforeza belkov semyan: metodicheskiye ukazaniya). V.G. Konarev (ed.). Leningrad: VIR; 1990. [in Russian]

50. Tripathy S.K. Legume seed storage proteins – A review. Advances in Bioresearch. 2018;9(6):152-162. DOI: 10.15515/abr.0976-4585.9.6.152162

51. Warsame A.O., O’Sullivan D.M., Tosi P. Seed storage proteins of faba bean (Vicia faba L): Current status and prospects for genetic improvement. Journal of Agricultural and Food Chemistry. 2018;66(48):12617-12626. DOI: 10.1021/acs.jafc.8b04992

52. Wong J.H., Ng T.B. 4.60 - Plant Biochemistry: Antifungal Proteins Protecting Plants from Fungal Pathogens. In: M. Moo-Young (ed.). Comprehensive Biotechnology. (2nd ed.). Amsterdam; 2011. Vol. 4. p.745-756. DOI: 10.1016/B978-0-08-088504-9.00013-1

53. Wu F.F., Sun W., Liu F., Gao Q., Jin M., Liu B., Wang X.G. Phylogenetic relationships in Vicia subgenus Vicilla (Fabaceae) based on combined evidence from DNA sequences. Legume Research – An International Journal. 2021;44(8):882-887. DOI: 10.18805/LR-596

54. Yassen A.A.M., Taha M.G.A., Ibrahim M.M., Khalifa Y.A.M. Identification of faba bean (Vicia faba L.) protein by electrophoresis. Archives of Agriculture Sciences Journal. 2022;5(3):261-274. DOI: 10.21608/aasj.2022.286228

55. Zhu X., Hua Y., Li X., Kong X., Chen Y., Zhang C. Growing of fungi on the stored low denatured defatted soybean meals and the hydrolysis of proteins and isoflavone glycosides by fungal enzymes. Food Research International. 2023;163:112261. DOI: 10.1016/j.foodres.2022.112261


Supplementary files

Review

For citations:


Konarev A.V., Eggi E.E., Aleksandrova T.G. Proteolytic degradation of seed proteins of vetch species (Vicia L. subgenus Vicia) of section Peregrinae Kupicha during SDS-electrophoresis and its prevention. Plant Biotechnology and Breeding. 2024;7(3):5-18. (In Russ.) https://doi.org/10.30901/2658-6266-2024-3-o2

Views: 274


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)