Candidate genes controlling the taste qualities of garden strawberry (Fragaria × ananassa Duch.) fruits
https://doi.org/10.30901/2658-6266-2024-4-o4
Abstract
Strawberry (Fragaria L.) is one of the commercially valuable berry crops. Strawberries are valued for their attractive appearance and nutritional value, are a low-calorie product and have a low glycemic index. In the industrial production, preference is given to cultivars distinguished by good resistance to pathogens, high yield and transportability. However, probably as a result of breeding aimed at improving these and other characteristics, most industrial cultivars have lost their taste qualities. The use of accelerated breeding methods to improve the taste of strawberry fruits is one of the promising areas. At the first stages of work to accelerate breeding, it is necessary to search for candidate genes that regulate certain qualities. To date, a total of over 2,000 volatile aromatic compounds are known in various fruit crops. The components regulating the sugar-acid index include sugars and organic acids. The review examines a group of genes, including the SWEET gene family, which regulate the transfer of sugars from leaves to fruits in a number of crops. The genes involved in the biosynthesis of sugars, associated with the accumulation of malic acid in fruit trees, citric acid in citrus fruits, as well as genes regulating the basic taste qualities of fruits and berries are considered. The key genes for flavor regulation in strawberry fruits are FaOMT, FaFAD1, and FanAAMT. The regulation of sucrose levels is influenced by the FaSPS, FaPHS1, FaSuc11, and FaSUSY genes, of glucose by FaGlu8 and FaGlu3, and of fructose by FaFRU. The content of citric acid is regulated by the FaMYB5 gene, while that of ascorbic acid is regulated by FaAKR23 and FaGalUR.
About the Authors
K. M. MezhinaRussian Federation
Ksenya M. Mezhina, Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
N. G. Tikhonova
Russian Federation
Nadezhda G. Tikhonova, Cand. Sci. (Biology), Senior Researcher, Head, Department of Genetic Resources of Fruit and Berry Crops, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
References
1. Aharoni A., Giri A.P., Verstappen F.W., Bertea C.M., Sevenier R., Sun Z., Jongsma M.A., Schwab W., Bouwmeester H.J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. The Plant Cell. 2004;16(11):3110-3131. DOI: 10.1105/tpc.104.023895
2. Akter F., Wu S., Islam M.S., Kyaw H., Yang J., Li M., Fu Y., Wu J. An efficient agrobacterium-mediated genetic transformation system for gene editing in strawberry (Fragaria × ananassa). Plants. 2024;13:563. DOI: 10.3390/plants13050563
3. Alabd A., Ni J., Bai S., Teng Y. Transcriptional co-regulation of anthocyanin accumulation and acidity in fruits. Fruit Research. 2024;4(1):1-8 DOI: 10.48130/frures-0023-0041
4. Arifova Z.I. Selection of initial material of strawberry on a complex of traits for the breeding process. Bulletin of the State Nikitsky Botanical Gardens. 2019;131:85-88. [in Russian]
5. Aslam M., Deng L., Wang X., Wang Y., Pan L., Liu H., Niu L., Lu Z., Cui G., Zeng W., Wang Z. Expression patterns of genes involved in sugar metabolism and accumulation during peach fruit development and ripening. Scientia Horticulturae. 2019;257:108633. DOI: 10.1016/j.scienta.2019.108633
6. Barbey C.R., Hogshead M.H., Harrison B., Schwartz A.E., Verma S., Oh Y., Lee S., Folta K.M., Whitaker V.M. Genetic analysis of methyl anthranilate, mesifurane, linalool, and other flavor compounds in cultivated strawberry (Fragaria × ananassa). Frontiers in Plant Science. 2021;12:615749. DOI: 10.3389/fpls.2021.615749
7. Baturin S.O., Kuznetsova L.L. Achievements and perspectives of breeding pink flowering garden strawberry (Fragaria × ananassa Duch.) in Western Siberia. Information bulletin of VOGiS. 2010;14(1):165-171. [in Russian]
8. Conti S., Villari G., Faugno S., Melchionna G., Somma S., Caruso G. Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Scientia Horticulturae. 2014;180:63-71. DOI: 10.1016/j.scienta.2014.10.015
9. Crespo P., Bordonaba J.G., Terry L.A., Carlen C. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chemistry. 2010;122(1):16-24. DOI: 10.1016/j.foodchem.2010.02.010
10. De Mori G., Cipriani G. Marker-assisted selection in breeding for fruit trait improvement: A review. International Journal of Molecular Sciences. 2023;24(10):8984. DOI: 10.3390/ijms24108984
11. Doev D.N., Kozyrev A.H., Hekilaev C.A. The effect of micronutrients on the quality of strawberries (Vliyanie mikroudobreniy na kachestvo yagod zemlyaniki). In: Prospects for the Development of the Agro-Iindustrial Complex in Modern Conditions: materials of the 8th International Scientific and Practical Conference; 2019 April 18-19; Vladikavkaz, Russia (Perspektivy` razvitiya APK v sovremenny`x usloviyakh: materialy 8-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii; 18-19 aprelya 2019; Vladikavkaz, Rossiya). Vladikavkaz; 2019. C.22-25. [in Russian]
12. Du M., Zhu Y., Nan H., Zhou Y., Pan X. Regulation of sugar metabolism in fruits. Scientia Horticulturae. 2024;326:112712. DOI: 10.1016/j.scienta.2023.112712
13. Dunemann F., Ulrich D., Malysheva-Otto L., Weber W.E., Longhi S., Velasco R., Costa F. Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Molecular Breeding. 2012;29:609-625. DOI: 10.1007/s11032-011-9577-7
14. Durán-Soria S., Pott D.M., Osorio S., Vallarino J.G. Sugar signaling during fruit ripening. Frontiers in Plant Science. 2020;11:564917. DOI: 10.3389/fpls.2020. 564917
15. Echeverrıa G., Graell J., López M., Lara I. Volatile production, quality and aroma-related enzyme activities during maturation of ‘Fuji’ apples. Postharvest Biology and Technology. 2004;31:217-227. DOI: 10.1016/j.postharvbio.2003.09.003
16. Eduardo I., Chietera G., Bassi D., Rossini L., Vecchietti A. Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture .2010;90(7):1146-1154. DOI: 10.1002/jsfa.3932
17. Fan R., Peng C., Xu Y., Wang X., Li Y., Shang Y., Du S., Zhao R., Zhang X., Zhang L., Zhang D. Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars. Plant Physiology. 2009;150:1880-1901. DOI: 10.1104/pp.109.141374
18. Fan Z, Jeffries K.A., Sun X., Olmedo G., Zhao W., Mattia M.R., Stover E., Manthey J.A., Baldwin E.A., Lee S., Gmitter F.G., Plotto A., Bai J. Chemical and genetic basis of orange flavor. Science Advances. 2024;10(9):eadk2051. DOI: 10.1126/sciadv.adk2051
19. Fan Z., Hasing T., Johnson T., Garner D., Schwieterman M., Barbey C., Colquhoun T., Sims C., Resende M., Whitaker V. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Horticulture Research. 2021;8:66). DOI: 10.1038/s41438-021-00502-5
20. FAOSTAT. The Food and Agriculture Organization (FAO) of the United Nations. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed 10.07.2024]
21. Fu X., Cheng S., Zhang Y., Du B., Feng C., Zhou Y., Mei X., Jiang Y., Duan X., Yang Z. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Fragaria × ananassa Duch.) under interaction of light and temperature. Food Chemistry. 2017;221:356-364. DOI: 10.1016/j.foodchem.2016.10.082
22. Gao M., Zhao H., Zheng L., Zhang L., Peng Y., Ma W., Tian R., Yuan Y., Ma F., Li M., Ma B. Overexpression of apple Ma12, a mitochondrial pyrophosphatase pump gene, leads to malic acid accumulation and the upregulation of malate dehydrogenase in tomato and apple calli. Horticulture Research. 2022;9:uhab053. DOI: 10.1093/hr/uhab053
23. Gilbert J.M., Young H., Ball R.D., Murray S.H. Volatile flavor compounds affecting consumer acceptability of kiwifruit. Journal of Sensory Studies. 1996;11(3):247-259. DOI: 10.1111/j.1745-459X.1996.tb00044.x
24. Hapova S.A., Maidebura N.M., Shibaev E.V. Peculiarities of strawberry varieties under greenhouse condition and on the open ground. Agroindustrial complex of Upper Volga Region Herald. 2009;(2):7-11. [in Russian]
25. Khlestkina E.K., Shumny V.K. Prospects for application of breakthrough technologies in breeding: the Crispr/Cas9 system for plant genome editing. Russian Journal of Genetics. 2016;52(7):676-687. DOI 10.7868/S0016675816070055
26. Lee J., Kim H., Noh Y., Min S.R., Lee H., Jung J., Park K., Kim D., Nam M.H., Kim T.I., Kim S., Kim H.. Sugar content and expression of sugar metabolism-related gene in strawberry fruits from various cultivars. Journal of Plant Biotechnology. 2018;45(2):90-101. DOI: 10.5010/JPB.2018.45.2.090
27. Li D., Xu Y., Xu G., Gu L., Li D., Shu H. Molecular cloning and expression of a gene encoding alcohol acyltransferase (MdAAT2) from apple (cv. Golden Delicious). Phytochemistry. 2006;67(7):658-667. DOI: 10.1016/j.phytochem.2006.01.027
28. Li M., Feng F., Cheng L. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PloS One. 2012;7(3):33055. DOI: 10.1371/journal.pone.0033055
29. Li S.J, Liu X.J., Xie X.L., Grierson D., Yin X.R., Chen K.S. CrMYB73, a PH-like gene, contributes to citric acid accumulation in citrus fruit. Scientia Horticulturae. 2015;197:212-217. DOI: 10.1016/j.scienta.2015.09.037
30. Li X., Gao P., Zhang C., Xiao X., Chen C., Song F. Aroma of peach fruit: a review on aroma volatile compounds and underlying regulatory mechanisms. International Journal of Food Science and Technology. 2023a;58(10):4965-4979. DOI: 10.1111/ijfs.16621
31. Li X., Wang J., Su M., Zhang M., Hu Y., Du J., Zhou H., Yang X., Zhang X., Jia H., Gao Z., Ye Z. Multiple-statistical genome-wide association analysis and genomic prediction of fruit aroma and agronomic traits in peaches. Horticulture Research. 2023b;10(7):uhad117. DOI: 10.1093/hr/uhad117
32. Li Y., He L., Song Y., Zhang P., Chen D., Guan L., Liu S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC Plant Biology. 2023;23(1):171. DOI: 10.1186/s12870-023-04191-1
33. Liston A., Cronn R., Ashman T.L. Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany. 2014;101(10):1686-1699. DOI: 10.3732/ajb.1400140
34. Liu H., Wei L., Ni Y., Chang L., Dong J., Zhong C., Sun R., Li S., Xiong R., Wang G., Sun J., Zhang Y., Gao Y. Genome-wide analysis of ascorbic acid metabolism related genes in Fragaria × ananassa and its expression pattern analysis in strawberry fruits. Frontiers in Plant Science. 2022;13:954505. DOI: 10.3389/fpls.2022.954505
35. Liu H.-T., Lyu W.-Y., Tian S.-H., Zou X.-H., Zhang L.-Q., Gao Q.-H., Ni D.-A., Duan K. The SWEET family genes in strawberry: identification and expression profiling during fruit development. South African Journal of Botany. 2019;125:176-187. DOI: 10.1016/j.sajb.2019.07.002
36. Liu W., Chen Z., Jiang S., Wang Y., Fang H., Zhang Z., Chen X., Wang N. Research progress on genetic basis of fruit quality traits in apple (Malus × domestica). Frontiers in Plant Science. 2022;13:918202. DOI: 10.3389/fpls.2022.918202
37. Liu Y., Zhu L., Yang M., Xie X., Sun P., Fang C., Zhao J. R2R3-MYB transcription factor FaMYB5 is involved in citric acid metabolism in strawberry fruits. Journal of Plant Physiology. 2022;277:153789. DOI: 10.1016/j.jplph.2022.153789
38. Liu Z., Liang T., Kang, C. Molecular bases of strawberry fruit quality traits: Advances, challenges, and opportunities. Plant Physiology. 2023;193(2):900-914. DOI: 10.1093/plphys/kiad376
39. Lyzhin A.S., Luk’yanchuk I.V Analysis of promising strawberry hybrid forms by FAOMT and FAFAD1 fruit aroma genes. Taurida Herald of the Agrarian Science. 2021;3(27):117-124. [in Russian]. DOI: 10.33952/2542-0720-2021-3-27-117-124
40. Lyzhin A.S., Luk’yanchuk I.V. Analysis of strawberry varieties and forms for the (Rca2) anthracnose resistance gene with molecular markers. Fruit Growing and Viticulture of South Russia. 2019;55:1-11. [in Russian]. DOI: 10.30679/2219-5335-2019-1-55-1-11
41. Lyzhin A.S., Luk’yanchuk I.V., Zhbanova E.V. Polymorphism of the FaOMT and FaFAD1 genes for fruit flavor volatiles in strawberry varieties and wild species from the genetic collection of the Michurin Federal Research Center. Vavilov Journal of Genetics and Breeding. 2020;24(1):5. DOI: 10.18699/VJ20.588
42. Ma Y., Tian T., Zhou J., Huang F., Wang Y., Liu Y., Liu Z., He W., Li M., Lin Y., Zhang Y., Zhang Y., Luo Y., Tang H., Chen Q, Wang X., Wang Y. Fruit sugar and organic acid composition and inheritance analysis in an intraspecific cross of Chinese cherry. LWT. 2024;198:116101. DOI: 10.1016/j.lwt.2024.116101
43. Machulkina V.A., Sannikov T.A., Gulin A.V., Antipenko N.I. Using the sugar and acid index for the assessment of the quality of tomatoes fruits. Bulletin of KrasGAU. 2020;5(158):168-172. [in Russian]. DOI: 10.36718/1819-4036-2020-5-168-172
44. Mezhnina O.A., Urbanovich O.Yu. Identification of strawberry varieties (Fragaria ananassa) using SSR markers. Molecular and Applied Genetics. 2016;20:37-45. [in Russian]
45. Newerli-Guz J., Śmiechowska M., Drzewiecka A., Tylingo R. Bioactive ingredients with health-promoting properties of strawberry fruit (Fragaria × ananassa Duchesne). Molecules. 2023;28(6):2711. DOI: 10.3390/molecules28062711
46. Oh Y., Barbey C.R., Chandra S., Bai J., Fan Z., Plotto A., Pillet J., Folta K.M., Whitaker V.M., Lee S. Genomic characterization of the fruity aroma gene, FaFAD1, reveals a gene dosage effect on γ-decalactone production in strawberry (Fragaria × ananassa). Frontiers in Plant Science. 2021;12:639345. DOI: 10.3389/fpls.2021.639345
47. Olbricht K., Grafe C., Weiss K., Ulrich D. Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breeding. 2008;127(1):87-89. DOI: 10.1111/j.1439-0523.2007.01422.x
48. Peng Q., Cai Y., Lai E., Nakamura M., Liao L., Zheng B., Ogutu C., Cherono S., Han Y. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology. 2020;20:191. DOI: 10.1186/s12870-020-02406-3
49. Podorozhnyi V.N., Gorelikova O.A. Criteria and parameters of the choice of varieties of strawberry for intensive technologies of its cultivation in Krasnodar region. Pomiculture and Small Fruits Culture in Russia. 2014;40(2):176-183. [in Russian]
50. Prichko T.G., Germanova M.G. Suitability of strawberry cultivars from the Krasnodar Territory for quick freezing. (Sortoprigodnost' yagod zemlyaniki Krasnodarskogo kraya dlya bystroy zamorozki). Horticulture and Viticulture. 2011;(6):16-19. [in Russian]
51. Qi L., Li C., Sun J.; Liu W., Yang Y., Li X., Li H., Du Y., Mostafa I., Yin Z. Jasmonate promotes ester aroma biosynthesis during nanguo pears storage. Horticulturae. 2024;10(4):329. DOI: 10.3390/horticulturae10040329
52. Rakhmangulov R.S. Application of the CRISPR/Cas system for gene editing in ornamental crops. Plant Biotechnology and Breeding. 2022;5(3):33-41. [in Russian]. DOI 10.30901/2658-6266-2022-3-o1
53. Rakhmangulov R.S., Barabanov I.V., Erastenkova M.V., Ivanov A.A., Kovalenko T.V., Mezhina K.M., Petrosyan I.A., Kharchenko A.A., Shaimardanov D.Yu., Shaimardanova E.Kh., Anisimova I.N., Tikhonova N.G., Ukhatova Yu.V., Khlestkina E.K. The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR). Plant Biotechnology and Breeding. 2022;5(4):65-78. [in Russian]. DOI: 10.30901/2658-6266-2022-4-o3
54. Ren Y., Liao S., Xu Y. An update on sugar allocation and accumulation in fruits. Plant Physiology. 2023;193(2):888-899. DOI: 10.1093/plphys/kiad294
55. Samarokova A.V., Kirichenko N.A. Historical aspects of the origin and distribution of the garden strawberry. In: Innovative trends in the development of Russian science (Innovatsionnyye tendentsii razvitiya rossiyskoy nauki). Krasnoyarsk; 2023. p.105-107. [in Russian]
56. Sánchez-Sevilla J.F., Cruz-Rus E., Valpuesta V., Botella M.A., Amaya I. Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. BMC genomics. 2014;15:1-15. DOI: 10.1186/1471-2164-15-218
57. Scherer R., Rybka A., Ballus C., Meinhart A., Filho J., Godoy H. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry. 2012;135:150–154. DOI: 10.1016/j.foodchem.2012. 03.111
58. Schiller D., Contreras C., Vogt J., Dunemann F., Defilippi B.G., Beaudry R., Schwab W. A dual positional specific lipoxygenase functions in the generation of flavor compounds during climacteric ripening of apple. Horticulture Research. 2015;2:280-292. DOI: 10.1038/hortres.2015.3
59. Shanmugam A., Hossain M.R., Natarajan S., Jung H.J., Song J.Y., Kim H.T., Nou I.S. Sugar content analysis and expression profiling of sugar related genes in contrasting strawberry (Fragaria × ananassa) cultivars. Journal of Plant Biotechnology. 2017;44(2):178-190. DOI: 10.5010/JPB.2017.44.2.178
60. Shulaev V., Sargent D.J., Crowhurst R.N., Mockler T.C., Folkerts O., Delcher A.L., Jaiswal P., Mockaitis K., Liston A., Mane S.P., Burns P., Davis T.M., Slovin J.P., Bassil N., Hellens R.P., Evans C., Harkins T., Kodira C., Desany B., Crasta O.R., Jensen R.V., Allan A.C., Michael T.P., Setubal J.C., Celton J.M., Rees D.J., Williams K.P., Holt S.H., Ruiz Rojas J.J., Chatterjee M., Liu B., Silva H., Meisel L., Adato A., Filichkin S.A., Troggio M., Viola R., Ashman T.L., Wang H., Dharmawardhana P., Elser J., Raja R., Priest H.D., Bryant D.W. Jr., Fox S.E., Givan S.A., Wilhelm L.J., Naithani S., Christoffels A., Salama D.Y., Carter J., Lopez Girona E., Zdepski A., Wang W., Kerstetter R.A., Schwab W., Korban S.S., Davik J., Monfort A., Denoyes-Rothan B., Arus P., Mittler R., Flinn B., Aharoni A., Bennetzen J.L., Salzberg S.L., Dickerman A.W., Velasco R., Borodovsky M., Veilleux R.E., Folta K.M. The genome of woodland strawberry (Fragaria vesca). Nature Genetics. 2011;43(2):109-116. DOI: 10.1038/ng.740
61. Skupień K., Oszmiański J. Comparison of six cultivars of strawberries (Fragaria × ananassa Duch.) grown in northwest Poland. European Food Research and Technology. 2004;219:66-70. DOI: 10.1007/s00217-004-0918-1
62. State Register for Selection Achievements Admitted for Usage (National List). Vol. 1. “Plant varieties” (official publication). Moscow: Ministry of Agriculture of Russia; Gossortkomissiya; 2024. [in Russian]
63. Tian L., Jia H.F., Li C.L., Fan P.G., Xing Y., Shen Y.Y. Sucrose accumulation during grape berry and strawberry fruit ripening is controlled predominantly by sucrose synthase activity. The Journal of Horticultural Science and Biotechnology. 2012;87(6):661-667. DOI: 10.1080/14620316.2012.11512927
64. Tikhonova N.G., Khlestkina E.K. Genetic editing for improvement of fruit and small fruit crops. Horticulture and Viticulture. 2019;(4):10-15. [in Russian]. DOI: 10.31676/0235-2591-2019-4-10-15
65. Ufimtseva L.V., Glaz N.V., Lezin M.S. The use of sugar-acid index in the evaluation of varieties taste of honeyberry. In: Scientific notes of the Chelyabinsk branch of the Russian Botanical Society (Uchenye zapiski Chelyabinskogo otdeleniya Russkogo Botanicheskogo obshchestva). Chelyabinsk; 2020. Iss. 3. p.123-127. [in Russian]
66. Ukhatova Y.V., Erastenkova M.V., Korshikova E.S., Krylova E.A., Mikhailova A.S., Semilet T.V., Tikhonova N.G., Shvachko N.A., Khlestkina E.K. Improvement of crops using the CRISPR/Cas system: new target genes. Molecular Biology. 2023;57(3):387-410. [in Russian]. DOI: 10.31857/S0026898423030151
67. Ulrich D., Olbricht K. A search for the ideal flavor of strawberry – comparison of consumer acceptance and metabolite patterns in Fragaria × ananassa Duch. Journal of Applied Botany and Food Quality. 2016;89:223-234. DOI:10.5073/JABFQ.2016.089.029
68. Urrutia M., Meco V., Rambla J.L., Martin-Pizarro C., Pillet J., Andres J., Sanchez-Sevilla J.F., Granell A., Hytönen T., Pose D. Diversity of the volatilome and the fruit size and shape in European woodland strawberry (Fragaria vesca). The Plant Journal. 2023;116(5):1201-1217. DOI: 10.1111/tpj.16404
69. Usenik V., Fabčič J., Štampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chemistry. 2008;107(1):185-192. DOI:10.1016/j.foodchem.2007.08.004
70. Villavicencio J.D., Zoffoli J.P., Plotto A., Contreras C. Aroma compounds are responsible for an herbaceous off-flavor in the sweet cherry (Prunus avium L.) Cv. Regina during fruit development. Agronomy. 2021;11(10):2020. DOI: 10.3390/agronomy11102020
71. Voloschenko S.S., Sorokopudov V.N., Ivanova Yu.Yu., Sorokopudova O.A. Features of the chemical compound of berries of wild strawberry in the conditions of the Belgorod region. Modern Problems of Science and Education. 2011;6:271-271. [in Russian]
72. Vondracek K., Altpeter F., Liu T., Lee S. Advances in genomics and genome editing for improving strawberry (Fragaria × ananassa). Frontiers in Genetics. 2024;15:1382445. DOI: 10.3389/fgene.2024.1382445
73. Wang J., Yin Y., Gao H., Sheng L. Identification of MYB transcription factors involving in fruit quality regulation of Fragaria × ananassa Duch. Genes. 2022;14(1):68. DOI: 10.3390/genes14010068
74. Wang L., Zheng X., Ye Z., Su M., Zhang X., Du J., Li X., Zhou H., Huan C. Transcriptome co-expression network analysis of peach fruit with different sugar concentrations reveals key regulators in sugar metabolism involved in cold tolerance. Foods. 2023;12(11):2244. DOI: 10.3390/foods12112244
75. Wang Q., Gao F., Chen X., Wu W., Wang L., Shi J., Huang Y., Shen Y., Wu G., Guo J. Characterization of key aroma compounds and regulation mechanism of aroma formation in local Binzi (Malus pumila × Malus asiatica) fruit. BMC Plant Biology. 2022;22(1):532. DOI: 10.1186/s12870-022-03896-z
76. Wang W., Wang M.Y., Zeng Y., Chen X., Wang X., Barrington A.M., Tao J., Atkinson R.G., Nieuwenhuizen N.J. The terpene synthase (TPS) gene family in kiwifruit shows high functional redundancy and a subset of TPS likely fulfil overlapping functions in fruit flavour, floral bouquet and defence. Molecular Horticulture. 2023;3(1):9. DOI: 10.1186/s43897-023-00057-0
77. Wei L., Liu H., Ni Y., Dong J., Zhong C., Sun R., Li S., Xiong R., Wang G., Sun J., Zhang Y., Chang L., Gao Y. FaAKR23 modulates ascorbic acid and anthocyanin accumulation in strawberry (Fragaria × ananassa) fruits. Antioxidants. 2022;11:1828. DOI: 10.3390/antiox11091828
78. Xu H., Zou Q., Yang G., Jiang S., Fang H., Wang Y., Zhang J., Zhang Z., Wang N., Chen X. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Horticulture Research. 2020;7:1-17. Article No. 72. DOI: 10.1038/s41438-020-0294-4
79. Yeliseyeva L.G., Blinnikova O.M., Novikova I.M. Characteristics of functional activity of different botanical grades of berries of wild strawberry garden. In: Problems of identification, quality and competitiveness of consumer goods (Problemy identifikatsii, kachestva i konkurentosposobnosti potrebitel’skikh tovarov). Kursk; 2015. p.103-107. [in Russian]
80. Zhang C., Liu Y., Wang B., Li H., Zhang J., Ma Y., Dai H., Wang Y., Zhang Z. CRISPR/Cas9 targeted knockout FvPHO2 can increase phosphorus content and improve fruit quality of woodland strawberry. Scientia Horticulturae. 2023;317:112078. DOI: 10.1016/j.scienta.2023.112078
81. Zhang L., Ma B., Wang C., Chen X., Ruan Y.L., Yuan Y., Ma F., Li M. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). Plant Physiology. 2022;188(4):2059-2072. DOI: 10.1093/plphys/kiac023
82. Zhang Q., Feng C., Li W., Qu Z., Zeng M., Xi W. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. BMC genomics. 2019;20:1-15. DOI: 10.1186/s12864-019-5424-8
83. Zhen Q., Fang T., Peng Q., Lia L., Zhao L., Owiti A., Han Y. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Horticulture research. 2018;5:14. DOI: 10.1038/s41438-018-0024-3
84. Zhu L., Tian X., Peng Y., Su J., Li B., Yang N., Ma F., Li M. Comprehensive identification of sugar transporters in the Malus spp. genomes reveals their potential functions in sugar accumulation in apple fruits. Scientia Horticulturae. 2022;303:111232. DOI: 10.1016/j.scienta.2022.111232
85. Zorrilla-Fontanesi Y., Rambla J.L., Cabeza A., Medina J.J., Sánchez-Sevilla J.F., Valpuesta V., Botella M.A., Granel A., Amaya I. Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiology. 2012;159(2):851-870. DOI: 10.1104/pp.111.188318
Review
For citations:
Mezhina K.M., Tikhonova N.G. Candidate genes controlling the taste qualities of garden strawberry (Fragaria × ananassa Duch.) fruits. Plant Biotechnology and Breeding. 2024;7(4):18-30. (In Russ.) https://doi.org/10.30901/2658-6266-2024-4-o4