PCR test to determine whether the destroyed remains of carbonized seeds belong to the genus Hordeum L.
https://doi.org/10.30901/2658-6266-2024-4-o7
Abstract
During excavations of historical monuments, archaeologists find various artifacts that testify to the existence and everyday life of our distant ancestors. Particular attention is paid to the remains of living organisms. They not only provide evidence of the economic activity of ancient farmers, but also help to identify phylogenetic relationships and domestication processes in the world's centers of diversity. Due to the long-term presence of paleontological objects in the environment that is not conducive to preservation, they often get destroyed and it becomes impossible to determine which species they belong to. Therefore, archaeologists increasingly resort to the help of paleogeneticists. The works on studies of ancient DNA (aDNA) from human and animal remains are known in Russia. However, paleogenetic studies of fossil plant remains such as pollen, seeds, and timber are few. In 2019, carbonized grains of cereal crops were found on the territory of the Usvyaty settlement in Pskov Region. The findings date back to the 12th century. The morphological analysis of the seed mixture resulted in finding grains, the degree of destruction of which prevented determination of the species they belong to by analyzing their microrelief. Therefore, the aim of this study was to develop taxon-specific primers that yield a short amplification product for the analysis of fragmented aDNA from the destroyed barley caryopses. As a result, a PCR test named HORDELF was developed, which is recommended for the identification of plant residues (carbonized seeds) belonging to the genus Hordeum L.
About the Authors
T. V. SemiletRussian Federation
Tatiana V. Semilet, Junior Researcher, Laboratory of Postgenomic Research, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
L. Yu. Shipilina
Russian Federation
Liliya Yu. Shipilina, Cand. Sci. (Biology), Senior Researcher, Laboratory of Bioresources Monitoring and Archaeobotany, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
E. K. Khlestkina
Russian Federation
Elena K. Khlestkina, Dr. Sci. (Biology), Professor of the Russian Academy of Sciences (RAS), Director, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
N. A. Shvachko
Russian Federation
Natalia A. Shvachko, Cand. Sci. (Biology), Leading Researcher, Head, Laboratory of Postgenomic Research, VIR
42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia
References
1. Adonina I.G., Orlovskaya O.A., Tereshchenko O.Yu., Korenb L.V., Khotyleva L.V., Shumnya V.K., Salina E.A. Development of commercially valuable traits in hexaploid Triticale lines with Aegilops introgressions as dependent on the genome composition. Russian Journal of Genetics. 2011;47(4):453-461. DOI: 10.1134/S1022795411040028
2. Antil S., Abraham J.S., Sripoorna S., Maurya S., Dagar J., Makhija S., Bhagat P., Gupta R., Sood U., Lal R., Toteja R. DNA barcoding, an effective tool for species identification: a review. Molecular Biology Reports. 2023;50(1):761-775. DOI: 10.1007/s11033-022-08015-7
3. Benito C., Silva-Navas J., Fontecha G., Hernandez-Riquer M.V., Eguren M., Salvador N., Gallego F.J. From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil. 2010;327:107-120.
4. Bilgic H., Hakki E.E., Pandey A., Khan M.K., Akkaya M.S. Ancient DNA from 8400 year-old Çatalhöyük wheat: implications for the origin of neolithic agriculture. PLOS ONE. 2016;11(3):e0151974. DOI: 10.1371/journal.pone.0151974
5. Boden S.A., Weiss D., Ross J.J., Davies N.W., Trevaskis B., Chandler P.M., Swain S.M. EARLY FLOWERING 3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. The Plant Cell. 2014;26(4):1557-1569. DOI: 10.1105/tpc.114.123794
6. Bouby L. Lorge à deux range (Hordeum distichum) dans l’agriculture Gallo-Romaine: données archéobotaniques. Revue Archéométrie. 2001;25:35-44. [in French]
7. Bunning S.L., Jones G., Brown T.A. Next generation sequencing of DNA in 3300-year-old charred cereal grains. Journal Archaeology Science. 2012;39(8):2780-2784. DOI: 10.1016/j.jas.2012.04.012
8. Charles M., Bogaard A. Charred plant macro-remains from Jeitun: implications for early cultivation and herding practices in western Central Asia. In: D.R. Harris (ed.) Origins of agriculture in western Central Asia. An environmental-archaeological study. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. 2011:150-165. DOI: 10.9783/9781934536513
9. Deng W., Clausen J., Boden S., Oliver S.N., Casao M.C., Ford B., Anderssen R.S., Trevaskis B. Dawn and dusk set states of the circadian oscillator in sprouting barley (Hordeum vulgare) seedlings. PLoS One. 2015;10(6):1-18. DOI: 10.1371/journal.pone.0129781
10. Faure S., Turner A.S., Gruszka D., Christodoulou V., Davis S.J., Korffet von M., Laurie D. Mutation at the circadian clock gene Early maturity 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. PNAS. 2012;109(21):8328-8333. DOI: 10.1073/pnas.1120496109
11. Fernandez E., Thaw S. Brown T.A., Arroyo-Pardo E., Buxo R., Serret M.D., Araus J.L. DNA analysis in charred grains of naked wheat from several archaeological sites in Spain. Journal of Archaeological Science. 2013;40(1):659-670. DOI: 10.1016/j.jas.2012.07.014
12. GeneBank NCBI, National Center for Biotechnology Information; 2024. Available from: https://www.ncbi.nlm.nih.gov/nucleotide/ [accessed Dec. 3, 2024].
13. Grazina L., Amaral J.S., Mafra I. Botanical origin authentication of dietary supplements by DNA-based approaches. Comprehensive Reviews in Food Science and Food Safety. 2020;19:1080-1109. DOI: 10.1111/1541-4337.12551
14. Helback B.H. Domestication of food plants in the old world: joint efforts by botanists and archeologists illuminate the obscure history of plant domestication. Science. 1959;130(3372):365-372. DOI: 10.1126/science.130.3372.365
15. Hemming M.N., Walford S.A., Fieg S., Dennis E.S., Trevaskis B. Identification of high-temperature-responsive genes in cereals. Plant Physiology. 2012;158:1439-1450. DOI: 10.1104/pp.111.192013
16. Hill C.B., Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. Frontiers in Plant Science. 2016;19(7):1-23. DOI: 10.3389/fpls.2016.01906
17. Huang H., Gehan M.A., Huss S.E., Alvarez S., Lizarraga C., Gruebbling E.L., Gierer J., Naldrett M.J., Bindbeutel R.K., Evans B.S., Mockler T.C., Nusinow D.A. Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant Direct. 2017;1(14). DOI: 10.1002/pld3.18
18. Jacomet S. Identification of cereal remains from archaeological sites. Basel: Basel University, Archaeobotany Lab IPAS; 2006.
19. Khlestkina E.K., Than M.H., Pestsova E.G., Röder M.S., Malyshev S.V., Korzun V., Börner A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theoretical and Applied Genetics. 2004;109:725-732. DOI: 10.1007/s00122-004-1659-z
20. Khlestkina E.K., Tereshchenko O.Y., Salina E.A. Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Molecular Genetics and Genomics. 2009;282:475-485. DOI: 10.1007/s00438-009-0479-x
21. Khlestkina E.K., Shoeva O.Y. Intron loss in the chalcone-flavanone isomerase gene of rye. Molecular Breeding. 2014;33(4):953-959. DOI: 10.1007/s11032-013-0009-8
22. Kress W.J., Erickson D.L. DNA Barcodes Methods and Protocols. In: Kress W., Erickson D. (eds). DNA Barcodes. Methods in Molecular Biology. Vol 858. Humana Press, Totowa, NJ. Humana Press; 2012. p. 3-8. DOI: 10.1007/978-1-61779-591-6_1
23. Li X., Yang Y., Henry R.J., Rossetto M., Wang Y., Chen S. Plant DNA barcoding: from gene to genome. Biological reviews of the Cambridge Philosophical Society. 2015;90(1):157-66. DOI: 10.1111/brv.12104
24. Lister D.L., Jones H., Jones M.K., O'Sullivan D.M., Cockram J. Analysis of DNA polymorphism in ancient barley herbarium material: validation of the KASP SNP genotyping platform. Taxon. 2013;62(4):779-89. DOI: 10.12705/624.9
25. Pavlik B.M., del Rio A., Bamberg J., Louderback L.A. Evidence for human-caused founder effect in populations of Solanum jamesii at archaeological sites: II. Genetic sequencing establishes ancient transport across the Southwest USA. American Journal of Botany. 2024;111(7):e16365. DOI: 10.1002/ajb2.16365
26. Pérez-Escobar O.A, Tusso S., Przelomska N.A.S., Wu S., Ryan P., Nesbitt M., Silber M.V., Preick M., Fei Z., Hofreiter M., Chomicki G., Renner S.S., Genome sequencing of up to 6,000-year-old Citrullus seeds reveals use of a bitter-fleshed species prior to watermelon domestication. Molecular Biology and Evolution. 2022;39(8):msac168. DOI: 10.1093/molbev/msac168
27. Phytozome 13, The Plant Genomic Resource; 2024. Available from: https://phytozome-next.jgi.doe.gov/report/transcript/HvulgareMorex_V3/ HORVU.MOREX.r3.3HG0292270.1 [accessed Dec. 3, 2024]
28. Pollmann B., Jacomet S., Schlumbaum A. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium (Eschenz, Switzerland). Journal of Archaeological Science. 2005;32(10):1471-1480. DOI: 10.1016/j.jas.2005.04.002
29. Richards S.M., Li L., Breen J., Hovhannisyan N., Estrada O., Gasparyan B., Gilliham M., Smith A., Cooper A., Zhang H. Recovery of chloroplast genomes from medieval millet grains excavated from the Areni-1 cave in Southern Armenia. Scientific reports. 2022;12(1). DOI: 10.1038/s41598-022-17931-4
30. Riehl S., Pustovoytov K.E., Weippert H., Klett S., Hole F. Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proceedings of the National Academy of Sciences. 2014;111(34):12348-12353. DOI: 10.1073/pnas.1409516111
31. Sadder M., Brake M., Ayoub S., Abusini Y., Al-Amad I., Haddad N. Complete mitochondrial genome sequence of historical olive (Olea europaea Linnaeus 1753 subsp. europaea) cultivar Mehras in Jordan. Mitochondrial DNA Part B: Resourses. 2023;8(11):1205-1208. DOI: 10.1080/23802359.2023.2275828
32. Semilet T., Shvachko N., Smirnova N., Shipilina L., Khlestkina E. Using DNA markers to reconstruct the lifetime morphology of barley grains from carbonized cereal crop remains unearthed at Usvyaty Settlement. Biological Communications. 2023;68(1):3-9. DOI: 10.21638/spbu03.2023.101
33. Schubert M., Ermini L., Sarkissian C., Jónsson H., Ginolhac A., Schaefer R., Martin M.D., Fernández R., Kircher M., McCue M., Willerslev E., Orlando L. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nature Protocols. 2014;9:1056-1082. DOI: 10.1038/nprot.2014.063
34. Vallebueno-Estrada M., Hernandez-Robles G.G., González-Orozco E., Lopez-Valdivia I., Rosales Tham T., Vasquez Sanchez V., Swarts K., Dillehay T.D., Vielle-Calzada J.P., Montiel R. Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru. Elife. 2023;12:e83149. DOI: 10.7554/eLife.83149. Erratum in: Elife. 2023;12:e91314.
35. Wang X., Zhao X., Zhu J., Wu W. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Research. 2005;12(6):417-427. DOI: 10.1093/dnares/dsi019
36. Wales N., Andersen K., Cappellini E., Ávila-Arcos M.C., Gilbert M.T.P. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS ONE. 2014;9(1):e86827. DOI: 10.1371/journal.pone.0086827
37. Wales N., Kistler L. Extraction of ancient DNA from plant remains. Methods Molecular Biology. 2019:45-55. DOI: 10.1007/978-1-4939-9176-1_6
38. Zakhrabekova S., Gough S.P., Braumann I., Müller A.H., Lundqvist J., Ahmannet K., Dockter C., Matyszczak I., Kurowska M., Druka A., Waugh R., Graner A., Stein N., Steuernagel B., Lundqvist U., Hansson M. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. PNAS USA. 2012;109(11):4326-4331. DOI: 10.1073/pnas.1113009109
Review
For citations:
Semilet T.V., Shipilina L.Yu., Khlestkina E.K., Shvachko N.A. PCR test to determine whether the destroyed remains of carbonized seeds belong to the genus Hordeum L. Plant Biotechnology and Breeding. 2024;7(4):105-113. (In Russ.) https://doi.org/10.30901/2658-6266-2024-4-o7