Preview

Plant Biotechnology and Breeding

Advanced search

Influence of the genotype and weather conditions of the Northwestern region of the Russian Federation on the linseed (Linum usitatissimum L.) oil fatty acid composition

https://doi.org/10.30901/2658-6266-2024-4-o5

Abstract

Linseed is one of the main oil crops, the sawing area of which have expanded significantly in recent years and spread to the areas with a more severe climate. In order to achieve sustainable high yields of appropriate quality, it is necessary to analyze the impact of new climate conditions on the consumer properties of the products obtained. Current paper analyzes the influence of weather conditions of the Northwest of the Russian Federation on the oil fatty acid composition of different linseed cultivars. The content of 16 fatty acids was analyzed by gas chromatography in 20 cultivars and lines from the VIR collection grown in the Leningrad Region in 2016-2018 and characterized by different origins and different oil compositions. The content of 16 fatty acids was analyzed by gas chromatography. It was found that the genotype has practically no effect on the content of acids with short carbon chain (up to C14) and elaidic acid detected in mature seeds. At the same time, drought reduced their fraction in oil up to the point of complete absence. The amount of long-chain acids depended on both the genotype and the cultivation conditions. The fractions of linoleic and linolenic acids were almost totally determined by the genotype. At the same time, we have confirmed the data obtained by other authors reporting that a decrease in air temperature leads to a decrease of the amount of oleic acid and an increase in the fraction of linolenic acid. However, this is true only for the cultivars containing a large amount of linolenic acid, that is, for those bearing dominant alleles of the FAD3A and FAD3B genes that control the last stage of fatty acid desaturation in flax.

About the Authors

N. B. Brutch
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Nina B. Brutch, Dr. Sci (Biology), Chief Researcher, Head, Department of Oil and Fiber Crop Genetic Resources,  VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



V. V. Vasipov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Valdimir V. Vasipov, postgraduate student,  VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



A. V. Pavlov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Andrey V. Pavlov, Cand. Sci (Agriculture), Senior Researcher, Department of Oil and Fiber Crop Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



T. V. Shelenga
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Tatiana V. Shelenga, Cand. Sci. (Biology), Leading Researcher, Department of Biochemistry and Molecular Biology, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



References

1. Banik M., Duguid S., Cloutier S. Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation. Genome. 2011;54:471-483. DOI: 10.1139/g11-013

2. Brutch N.B., Porokhoviniva E.A., Shelenga T.V. Innovative possibilities for linseed breeding orientated at the different oil composition. Achievements of Science and Technology of AIC. 2016;30(6):5-8. [in Russian]

3. Cunnane S. Metabolism and function of α-linolenic acid in humans. In: Cunnane S. Flax seed in human nutrition. Champaing, USA: AOCS Press; 1995. p. 99-127.

4. Dar A.A., Choudhury A.R., Kancharla P.K., Arumugam N. The FAD2 gene in plants: occurrence, regulation, and role. Frontiers in Plant Science. 2017;8:1789. DOI: 10.3389/fpls.2017.01789

5. Durrett T.P., Benning C., Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. The Plant Journal. 2008;54(4):593-607. DOI: 10.1111/j.1365-313X.2008.03442.x

6. Fofana B., Cloutier S., Duguid S., Ching J., Rampitsch C. Gene expression of stearoyl-ACP desaturase and delta12 fatty acid desaturase 2 is modulated during seed development of flax (Linum usitatissimum). Lipids. 2006;41(7):705-712. DOI: 10.1007/s11745-006-5021-x

7. Gavrilova V., Brutch N., Dubovskaya A., Konkova N., Porokhovinova E. Genetic and breeding aspects that determine the quality of seeds, oil and meal of flax, sunflower, rapeseed and camelina (Geneticheskiye i selektsionnyye aspekty, opredelyayushchiye kachestvo semyan, masla i shrota l'na, podsolnechnika, rapsa i ryzhika). In: Oil and fat industry - 2005: factors determining the quality of oil and fat products: Materials of the 5th International conference; 2005 October 19-20; St. Petersburg, Russia. St. Petersburg; 2005. p.20-22. [in Russian]

8. Gavrilova V., Shelenga T., Porokhovinova E., Dubovskaya A., Konkova N., Grigoryev S., Podolnaya L., Konarev A., Yakusheva T., Kishlyan N., Pavlov A., Brutch N. The diversity of fatty acid composition in traditional and rare oil crops cultivated in Russia. Biological Communications 2020;65(1):68–81. DOI: 10.21638/spbu03.2020.106

9. Green A. Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theoretical and Applied Genetics. 1986;72(5):654-661. DOI: 10.1007/BF00289004

10. Grigoriev S.V., Illarionova K.V., Podolnaya L.P., Shelenga T.V. The use of the principal component analysis in ranking hemp (Cannabis sativa L.) accessions according to the seed oil fatty acid composition for crop improvement. Plant Biotechnology and Breeding. 2023;6(4):6-13. [in Russian]. DOI: 10.30901/2658-6266-2023-4-o2

11. Hatanaka T., Yamamoto N., Araki R., Kishigami M., Nakamoto T., Masumura T., Sugimoto T. Fatty acid compositions of triacylglycerols in flax (Linum usitatissimum L.) seeds with varied seeding dates and nitrogen fertilization in a temperate region of Japan. Soil science and plant nutrition 2021;67(3):269–276. DOI: 10.1080/00380768.2021.1908093

12. Khadake R.M., Ranjekar P.K., Harsulkar A.M. Cloning of a novel omega-6 desaturase from flax (Linum usitatissimum L.) and its functional analysis in Saccharomyces cerevisiae. Molecular Biotechnology. 2009;42(2):168-174. DOI: 10.1007/s12033-009-9150-3

13. Krasowska A., Dziakowiec D., Polinceusz A., Plonka A., Lukaszewicz M. Cloning of flax oleic fatty acid desaturase and its expression in yeast. Journal of the American Oil Chemists’ Society. 2007;84(9):809-816. DOI: 10.1007/s11746-007-1106-9

14. Kutuzova S.N., Pitko A.G. Guidelines for the study of the flax collection (Linum usitatissimum L.) (Metodicheskiye ukazaniya po izucheniyu kollektsii lna (Linum usitatissimum L.)). Leningrad: VIR; 1988. [in Russian]

15. Menard G.N., Moreno J.M., Bryant F.M., Munoz-Azcarate O., Kelly A.A., Hassani-Pak K., Kurup S., Eastmond P.J. Genome wide analysis of fatty acid desaturation and its response to temperature. Plant Physiology. 2017;173(3):1594-1605. DOI: 10.1104/pp.16.01907

16. Nikolau B.J., Ohlrogge J.B., Wurtele E.S. Plant biotin-containing carboxylases. Archives of Biochemistry and Biophysics. 2003;414(2):211-222. DOI: 10.1016/S0003-9861(03)00156-5

17. Popova G.A., Rogalskaya N.B., Knyazeva N.V., Trofimova V.M., Shelenga T.V., Porokhovinova E.A., Brutch N.B. The impact of weather conditions in different years on the biochemical composition of linseed oil. Proceedings on applied botany, genetics and breeding. 2021;182(3):91-100. [in Russian]. DOI: 10.30901/2227-8834-2021-3-91-100

18. Porokhovinova E.A., Shelenga T.V., Matveeva T.V., Pavlov A.V., Grigorieva E.A., Brutch N.B. Polymorphism of genes controlling low level of linolenic acid in lines from VIR flax genetic collection. Ecological Genetics. 2019;17(2):5-19. DOI: 10.17816/ecogen1725-19

19. Radovanovic N., Thambugal D., Duguid S., Loewen E, Cloutier S. Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity. Molecular Biotechnology, 2014;56(7):609-20. DOI: 10.1007/s12033-014-9737-1

20. Rajwade A.V., Kadoo N.Y., Borikar S.P., Harsulkar A.M., Ghorpade P.B., Gupta V.S. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. Phytochemistry. 2014;98(2):41-53. DOI: 10.1016/j.phytochem.2013.12.002

21. Somerville C.R., Browse J., Jaworski J.C., Ohlrogge J. Lipids. In: B.D. Buchanan, W. Gruissem, R.L. Jones (eds). Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologists; 2000. p.456-526.

22. Tai H., Jaworski J.G. 3-Ketoacylacyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase. Plant Physiology. 1993;103(4):1361-1367. DOI: 10.1104/pp.103.4.1361

23. Teixeira M.C., Carvalho I.S., Brodelius M. Omega-3 fatty acid desaturase genes isolated from purslane (Portulaca oleracea L.): expression in different tissues and response to cold and wound stress. Journal of Agricultural and Food Chemistry. 2010;58(3):1870-1877. DOI: 10.1021/jf902684v

24. Teixeira M.C., Coelho N., Olsson M.E., Brodelius P.E., Carvalho I.S., Brodelius M. Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnology Letters. 2009;31(7):1089-1101. DOI: 10.1007/s10529-009-9956-x

25. Tejklova E., Bjelkova M., Pavelek M. Medum-linolenic linseed (Linum usitatissimum L.) Raciol. Czech Journal of Genetics and Plant Breeding. 2011;47(3):128-130. DOI: 10.17221/96/2011-CJGPB

26. Thambugala D., Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). Journal of Applied Genetics. 2014;55(4):423-432. DOI: 10.1007/s13353-014-0222-0

27. Thambugala D., Duguid S., Loewen E., Rowland G., Booker H., You F.M., Cloutier S. Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theoretical and Applied Genetics. 2013;126(10):2627-2641. DOI: 10.1007/s00122-013-2161-2

28. Vega S.E., del Rio A.H., Bamberg J.B., Palta J.P. Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation. American Journal of Potato Research. 2004;81(2):125-135. DOI: 10.1007/BF02853610

29. Vrinten P, Hu Z., Munchinsky M.A., Rowland G., Qiu X. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiology. 2005;139(1):79-87. DOI: 10.1104/pp.105.064451

30. You F., Li P., Kumar S., Ragupathy R., Li Z., Fu Y., Cloutie S. Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L). Journal of Proteomics Bioinformation. 2014;7:310-326. DOI: 10.4172/jpb.1000334


Supplementary files

1. Supplement
Subject Fatty acids content in linseed oil
Type Анализ данных
Download (352KB)    
Indexing metadata ▾

Review

For citations:


Brutch N.B., Vasipov V.V., Pavlov A.V., Shelenga T.V. Influence of the genotype and weather conditions of the Northwestern region of the Russian Federation on the linseed (Linum usitatissimum L.) oil fatty acid composition. Plant Biotechnology and Breeding. 2024;7(4):7-17. (In Russ.) https://doi.org/10.30901/2658-6266-2024-4-o5

Views: 159


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)