Preview

Plant Biotechnology and Breeding

Advanced search

Genotyping of Triticum durum Desf. wheat accessions from the VIR collection based on the loci determining the rate of development and sensitivity to photoperiod (Vrn, Ppd)

https://doi.org/10.30901/2658-6266-2025-2-o1

Abstract

Background. The creation of early maturing, photoperiod-insensitive cultivars is a perspective direction of durum wheat (Triticum durum Desf.) breeding. The collection of wheat genetic resources at VIR can serve as a source of the genes for valuable breeding traits. The potential of durum wheat collection for important adaptation characters has been poorly studied, and the allelic diversity at the development rate gene loci is unknown. Screening of the collection with the use of the allele-specific molecular markers of the genes for vernalization response (Vrn) and photoperiod sensitivity (Ppd) is relevant. Material and methods. A sample set for genotyping loci of high growth rate included 48 T. durum accessions previously characterized for physiological characters and productivity components. Eight common allele-specific PCR markers selected from literature sources were used for the molecular screening. The photoperiod sensitivity coefficient was determined in a vegetation experiment under natural illumination and short 12-hour day conditions. Results. With the use of diagnostic markers, the dominant Vrn alleles for spring growth habit were identified in 24 accessions: 23 accessions were found to carry Vrn-A1 allele determining the spring growth habit; the dominant Vrn-B1 allele was detected in 24 accessions, while the Vrn-B3a allele was found only in the Ambo 7 accession. The dominant Ppd-A1 and Ppd-B1 alleles determining photoperiod insensitivity were identified in 21 accessions. A vegetation experiment has confirmed a weak response to the day length in eight Mexican lines that harbor markers of the dominant Vrn and Ppd alleles. Conclusion. Based on the phenotypic analysis and molecular genotyping data, 24 sources of early maturity genes were identified in durum wheat.

About the Authors

A. S. Andreeva
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Anna S. Andreeva, Junior Researcher, Department of Wheat Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



O. A. Lyapunova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Olga A. Lyapunova, Cand. Sci. (Agriculture), Leading Researcher, Department of Wheat Genetic Resources, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



I. I. Matvienko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Inna I. Matvienko, Researcher, Department of Genetics, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg 190000, Russia



I. N. Anisimova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Irina N. Anisimova, Dr. Sci. (Biology), Leading Researcher, Department of Genetics, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg 190000, Russia



References

1. Anisimova I.N., Alpatyeva N.V., Abdullaev R.A., Karabitsina Yu.I., Kuznetsova E.B. Screening of plant genetic resources with the use of DNA markers: basic principles, DNA isolation, PCR setup, agarose gel electrophoresis: (Guidelines). St. Petersburg: VIR; 2018 [in Russian]. DOI: 10.30901/978-5-905954-81-8

2. Arjona J.M., Royo C., Dreisigacker S., Ammar K., Villegas D. Effect of Ppd-A1 and Ppd-B1 allelic variants on grain number and thousand kernel weight of durum wheat and their impact on final grain yield. Frontiers in Plant Science. 2018;29:888. DOI: 10.3389/fpls.2018.00888

3. Beales J., Turner А., Griffiths S., Snape J.W., Laurie D.A. А Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat Triticum aestivum L. Theoretical and Applied Genetics. 2007;115(5):721-733. DOI: 10.1007/s00122-007-0603-4

4. Cockram J., Jones H., Leigh F.J. O'Sullivan D, Powell W., Laurie D.A., Greenland A.J. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. Journal of Experimental Botany. 2007;58:1231-1244. DOI: 10.1093/jxb/erm042

5. Diaz A., Zikhali M., Turner A.S. Isaac P., Laurie D.A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLOS One. 2012;7:e33234. DOI: 10.1371/journal.pone.0033234

6. Distelfeld A., Tranquilli G., Li C., Yan L., Dubcovsky J. Genetic and molecular variation of the VRN2 loci in tetraploid wheat. Plant Physiology. 2009a;149:245-257. DOI: 10.1104/pp.108.129353

7. Distelfeld A., Li C., Dubcovsky J. Regulation of flowering in temperate cereals. Current Opinion in Plant Biology. 2009b;12:178-184. DOI: 10.1016/j.pbi.2008.12.010

8. Distelfeld A., Dubcovsky J. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Molecular Genetics and Genomics. 2010;283:223-232. DOI: 10.1007/s00438-009-0510-2

9. Dorokhov D.B., Klocke E. A rapid and economic technique for RAPD-analysis of plant genomes. Genetics. 1997;33(4):358-365. [in Russian]

10. Dragovich A., Fisenko A.V., Yankovskaya A.A. Vernalization (VRN) and photoperiod (PPD) genes in Spring hexaploid wheat landraces. Russian Journal of Genetics. 2021;57(3):329-340. DOI: 10.1134/S1022795421030066

11. Fu D., Szucs Р., Yan L, Helguera М., Skinner J.S., von Zitzewitz J., Hayes P.M., Dubcovsky Ј. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics. 2005;273(1):54-65. DOI: 10.1007/s00438-004-1095-4

12. Gupta P.K., Varshney R.K., Sharma P.C., Ramesh B. Molecular markers and their applications in wheat breeding. Plant Breeding. 1999;118(5):369-390.

13. Khlestkina E.K. Molecular markers in genetic studies and breeding. Vavilov Journal of Genetics and Breeding. 2013;17(4/2):1044-1054. [in Russian]

14. Koebner R., Summers R. The impact of molecular markers on the wheat breeding paradigm. Cellular & Molecular Biology Letters. 2002;7(2B):695-702.

15. Konopatskaia I., Vavilova V., Kondratenko E.Y., Blinov A., Goncharov N.P. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biology. 2016;(S3):93-106. DOI: 10.1186/s12870-016-0924-z

16. Koshkin V.A. Methodical approaches of diagnostics of photoperiodical sensitivity and earliness of plants. Proceedings on Applied Botany, Genetics and Breeding. 2012;170:118-129 [in Russian]

17. Langer S.M., Longin C.F.H., Würschum T. Flowering time control in European winter wheat. Frontiers in Plant Science. 2014;5:537. DOI: 10.3389/fpls.2014.00537

18. Laurie D.A. Comparative genetics of flowering time. Plant Molecular Biology. 1997;35:167-177. DOI: 0.1007/978-94-011-5794-0_16

19. Lewis S., Faricelli M.E., Appendino M.L., Valárik M., Dubcovsky J. The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. Journal of Experimental Botany. 2008;59(13):3595-3607. DOI: 10.1093/jxb/ern209

20. Mammadov J., Aggarwal R., Buyyarapu R., Kumpatla S. SNP markers and their impact on plant breeding. International Journal of Plant Genomics. 2012:1-11. DOI: 10.1155/2012/728398

21. Mohan M., Nair S., Bhagwat A., Krishna T.G., Yano M., Bhatia C.R., Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding. 1997;3(2):87-103. DOI: 10.1023/A:1009651919792

22. Muterko A.F, Balashova I.A, Fayt V.I, Sivolap Yu.M. Molecular-genetic mechanisms of regulation of growth habit in wheat. Cytology and Genetics. 2015;49(1):71-86. DOI: 10.3103/S0095452715010089

23. Muterko A., Kalendar R., Salina E. Allelic variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 genes in cultivars of Triticum durum Desf. Planta. 2016;244:1253-1263. DOI: 10.1007/s00425-016-2584-5

24. Muterko A, Salina E. Divergence of VRN-B3 alleles during the evolution of domesticated wheat. Molecular Genetics and Genomics. 2018;294(1):263-275. DOI: 10.1007/s00438-018-1506-6

25. Ochagavía H., Prieto P., Zikhali M., Griffiths S., Slafer G.A. Earliness per se by temperature interaction on wheat development. Scientific Reports. 2019;9:2584. DOI: 10.1038/s41598-019-39201-6

26. Pugsley A.T. A genetic analysis of the spring-winter habit of growth in wheat. Australian Journal of Agricultural and Resource. 1971;22(1):21-31. DOI: 10.1071/AR9710021

27. Rana B., Rana P., Manoj K.J., Kumar S. Marker assisted selection: a strategy for wheat improvement. Wheat Information Service WIS. 2009;11:19-30.

28. Randhawa H.S., Asif M., Pozniak C., Clarke J.M., Graf R.J., Fox S.L., Humphreys D.G., Knox R.E., DePauw R.M., Singh A.K., Cuthbert R.D., Hucl P., Spaner D. Application of molecular markers to wheat breeding in Canada. Plant Breeding. 2013;132(5):458-471. DOI: 10.1111/pbr.12057

29. Rigin B.V., Shreyder E.R., Matvienko I.I., Andreevа A.S., Zuev E.V. Donors of ultra-earliness for spring common wheat breeding. Plant Biotechnology and Breeding. 2022;5(3):5-14. [In Russian]. DOI: 10.30901/2658-6266-2022-3-o3

30. Royo C., Dreisigacker S., Soriano J.M., Lopes M.S., Ammar K., Villegas D. Allelic variation at the vernalization response (Vrn-1) and photoperiod sensitivity (Ppd-1) genes and their association with the development of durum wheat landraces and modern cultivars. Frontiers in Plant Science. 2020;11:838. DOI: 10.3389/fpls.2020.00838

31. Seki М., Chono М., Matsunaka Н., Fujita М., Oda S, Kubo К., Kiribuchi-Otobe С., Kojima Н, Nishida Н, Kato К. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars. Breeding Science. 2011;61(4):405-412. DOI: 10.1270/jsbbs.61.405

32. Shaw L.M., Turner A.S., Laurie D.A. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant Journal. 2012;71(1):71-84. DOI: 10.1111/j.1365-313X.2012.04971.x.

33. Shimada S., Ogawa T., Kitagawa S., Suzuki T., Ikari C., Shitsukawa N., Abe T., Kawahigashi H., Kikuchi R., Handa H., Murai K. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant Journal. 2009;58(4):668-681. DOI: 10.1111/j.1365-313X.2009.03806.x

34. Stelmakh A.F. Genetic systems regulating flowering response in wheat. Euphytica. 1998;100:359-369. DOI: 10.1023/A:1018374116006

35. Takenaka S., Kawahara Т. Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences. Theoretical and Applied Genetics. 2012;125(5):999-1014. DOI: 10.1007/s00122-012-1890-y

36. Trevaskis B., Hemming M.N., Dennis E.S., Peacock W.J. The molecular basis of vernalization-induced flowering in cereals. Trends in Plant Science. 2007;12(8):352-357. DOI: 10.1016/j.tplants.2007.06.010

37. Turner A., Beales J., Faure S. Dunford R.P., Laurie D.A. The pseudo response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005;310:1031-1033. DOI: 10.1126/science.1117619

38. Turner A.S., Faure S., Zhang Y., Laurie D.A. The effect of day neutral mutations in barley and wheat on the interaction between photoperiod and vernalization. Theoretical and Applied Genetics. 2013;126:2267-2277. DOI: 10.1007/s00122-013-2133-6

39. Wilhelm E.P., Turner A.S., Laurie D.A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theoretical and Applied Genetics. 2009;118(2):285-294. DOI: 10.1007/s00122-008-0898-9

40. Worland A.J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica. 1996;89:49-57. DOI: 10.1007/BF00015718

41. Worland A.J., Börner A., Korzun V., Li M.W., Petrovíc S., Sayers E.J. The influence of photoperiod genes on the adaptability of European winter wheat. Euphytica. 1998;100:385-394. DOI: 10.1023/A:1018327700985

42. Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences. 2003;100(10):6263-6268. DOI: 10.1073/pnas.0937399100

43. Yan L., Helguera М., Kato К., Fukuyama S., Sherman J., Dubcovsky Ј. Allelic variation at the VRN1 promoter region in polyploid wheat. Theoretical and Applied Genetics. 2004a;109(8):1677-1686. DOI: 10.1007/s00122-004-1796-4

44. Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Bennetzen J., Echenique V., Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004b;303(5664):1640-1644. DOI: 10.1126/science.1094305

45. Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S., Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences. 2006;103(51):19581-19586. DOI: 10.1073/pnas.0607142103


Review

For citations:


Andreeva A.S., Lyapunova O.A., Matvienko I.I., Anisimova I.N. Genotyping of Triticum durum Desf. wheat accessions from the VIR collection based on the loci determining the rate of development and sensitivity to photoperiod (Vrn, Ppd). Plant Biotechnology and Breeding. https://doi.org/10.30901/2658-6266-2025-2-o1

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)