Preview

Plant Biotechnology and Breeding

Advanced search

CAPS markers for the analysis of plastid DNA polymorphism in representatives of the subgenus Prunophora (Neck. ex Spach) Focke of the genus Prunus L.

https://doi.org/10.30901/2658-6266-2025-3-o3

Abstract

Relevance. Common plum Prunus domestica L., cherry plum Prunus cerasifera Ehrh. and blackthorn Prunus spinosa L. belong to the section Prunus of the subgenus Prunophora (Neck. ex Spach) Focke of the genus Prunus L. It is believed that the species P. domestica originated from hybridization of cherry plum and blackthorn, however, due to the phenotypic heterogeneity of the European plum, the presence of a wide range of variations and transitional forms, as well as a complex hexaploid genome, the question of its origin is still a matter of debate. For in-depth study of phylogenetic relationships, the analysis of polymorphism of plastid genome sites using molecular marking and DNA barcoding technologies is currently widely used. In this study, we aimed to develop a set of CAPS markers for rapid analysis of plastid DNA polymorphism in representatives of the Prunus section. Materials and methods. Based on the analysis of the cpDNA sequence of Prunus cerasifera var. pissardii (Carrière) L.H. Bailey, 21 pairs of plastid-specific primers have been developed. The primers previously applied to cpDNA analysis in other species of the Rosaceae family, namely in representatives of the genus Rubus L., were also used. To test the primers and select restriction enzymes, a subset consisting of seven accessions of P. cerasifera, four cultivars of P. domestica, four accessions of blackthorn P. spinosa and one cultivar of the hybrid species Prunus×rossica Eremin was used. Results. We have developed 10 potential CAPS markers (primer/restriction enzyme combinations) that provide the most visual picture of plastid DNA polymorphism in accessions of European plum, cherry plum and blackthorn. To confirm the diagnostic value of the selected CAPS markers, an analysis was performed on an experimental subset of stone fruit crops from the VIR collection, which included 19 cultivars of P. domestica, 16 accessions of P. spinosa, seven cultivars of P. cerasifera and one hybrid involving Chinese plum Prunus salicina Lindl. The CAPS markers used in the work showed different levels of detectable polymorphism, most of the markers identified from three to five variants of restriction profiles, the most polymorphic was the petN/psbM region (RubPlast9/TaqI marker) with nine different spectra of restriction fragments. Combinations of different restriction profiles for each accession were assessed as a haplotype of cpDNA; in total, 20 haplotypes were identified in a relatively small subset of 43 accessions. Conclusion. The developed CAPS markers allow us to effectively analyze the polymorphism of stone fruit plastomes in the future. They will be used to study broader experimental sets of accessions of European plum, cherry plum, and blackthorn and to investigate the relationships between these species.

About the Authors

A. K. Makaov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Adam K. Makaov, Junior Researcher, Department of Biotechnology, Laboratory of Molecular Breeding and DNA Pasportization, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



O. E. Radchenko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Olga E. Radchenko, Researcher, Department of Genetic Resources of Fruit Crops, VIR

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000 Russia



K. R. Krivoruchko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ksenia R. Krivoruchko, Master's Student, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



O. Yu. Antonova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Olga Yu. Antonova, Cand. Sci. (Biology), Leading Researcher, Head, Laboratory of Molecular Breeding and DNA Pasportization, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



References

1. Antonova O.Yu., Klimenko N.S., Rybakov D.А., Fomina N.А., Zheltova V.V., Novikova L.Yu., Gavrilenko T.А. SSR analysis of modern Russian potato varieties using DNA samples of nomenclatural standards. Plant Biotechnology and Breeding. 2020;3(4):77-96. [in Russian]. DOI: 10.30901/2658-6266-2020-4-o2

2. Badenes M.L., Parfitt D.E. Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theoretical and Applied Genetics. 1995;90:1035-1041. DOI: 10.1007/BF00222918

3. Bortiri E., Oh S.-H., Jiang J., Baggett S., Granger A., Weeks C., Buckingham M., Potter D., Parfitt D.E. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL‐trnF spacer DNA. Systematic Botany. 2001;26(4):797-807. DOI: 10.1043/0363-6445-26.4.797

4. Bortiri E., Vanden Heuvel B., Potter D. Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy. Plant Systematics and Evolution. 2006;259:53-71. DOI: 10.1007/s00606-006-0427-8

5. CBOL – The Consortium for the Barcode of Life. Plant Working Group. A DNA barcode for land plants. Proceedings of the National Academy of Sciences (PNAS). 2009;106(31):12794-12797. DOI: 10.1073pnas.0905845106

6. Crane M., Lawrence W. Genetics of Garden Plants. London, UK: MacMillan; 1934.

7. Crane M., Lawrence W. The genetics of garden plants. 4th ed. London, UK: Macmillan; 1952.

8. Decroocq V., Favé M.G., Hagen L., Bordenave L., Decroocq S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical and Applied Genetics. 2003;106:912-922. DOI: 10.1007/s00122-002-1158-z

9. Demesure B., Sodzi N., Petit R. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular ecology. 1995;4:129-132. DOI: 10.1111/j.1365-294X.1995.tb00201.x

10. Dumolin-Lapegue S., Pemonge M.H., Petit R.J. An enlarged set of consensus primers for the study of organelle DNA in plants. Molecular ecology. 1997;6:393-397. DOI: 10.1046/j.1365-294X.1997.00193.x

11. Eryomine G.V. New data on origin of Prunus domestica L. Acta Horticulturae. 1990;283-2:27-30. DOI: 10.17660/ActaHortic.1990.283.2

12. Eremin G.V. Systematics of stone fruit plants (Sistematika kostochkovykh plodovykh rasteniy). In: Eremin G.V. (ed.) Pomology. Vol. 3. Stone fruit crops (Pomologiya. T. 3. Kostochkovye kultury). Orel: GNU VNIISPK; 2008. p.15-20. [in Russian]

13. FAO. The Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/faostat/ru/#data/QCL [accessed May 25, 2025]

14. GenBank. National Institutes of Health (NIH, USA) genetic sequence database, an annotated collection of all publicly available DNA sequences. GenBank No. #MN418903. Available at: https://www.ncbi.nlm.nih.gov/genbank

15. Halász J., Szendy G., Ivanovska B., Tóth E.G., Hegedűs A. The self-incompatibility locus and chloroplast DNA regions of Prunus domestica reflect the origin and genetic diversity of traditional cultivars. Journal of the American Society for Horticultural Science. 2023;148(5):230-239. DOI: 10.21273/JASHS05330-23

16. Hedrick U.P. The Plums of New York. Albany: J.B. Lyon Co., State Printers; 1911.

17. Horvath A., Balsemin E., Barbot J.C., Christmann H., Manzano G., Reynet P., Laigret F., Mariette S. Phenotypic variability and genetic structure in plum (Prunus domestica L.), cherry plum (P. cerasifera Ehrh.) and sloe (P. spinosa L.). Scientia Horticulturae. 2011;129:283-293.

18. IDT. Integrated DNA Technologies. OligoAnalyzer™ Tool. Available at: https://eu.idtdna.com/calc/analyzer [accessed Jun. 12, 2025].

19. Illa E., Sargent D.J., Girona E.L., Bushakra J., Cestaro A., Crowhurst R., Pindo M., Cabrera A., Van der Knapp E., Iezzoni A., Gardiner S., Velasco R., Arus P., Chagné D., Troggio M. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evolutionary Biology. 2011;11(9):1-13. DOI: 10.1186/1471-2148-11-9

20. Inglis P.W., Pappas M.C.R., Resende L.V., Grattapagila D. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high throughput SNP genotyping and sequencing applications. PLoS ONE. 2018;13(10):1-14. DOI: 10.17504/protocols.io.tzfep3n

21. Kamnev A.M., Antonova O.Y., Chukhina I.G. Development of CAPS-markers for studying plastid loci polymorphism in Rubus L. subgenus Idaeobathus Focke. Problems of botany of South Siberia and Mongolia. 2023;22(2):116-121. [in Russian]. DOI: 10.14258/pbssm.2023110

22. Komarov V.L. Rosaceae: Rosoideae, Amygdaloideae. In: Flora of the USSR. Vol.10. Washington D.C., USA: Smithsonian Institution; 1971. p.1-512.

23. Matveeva T.V., Pavlova O.A., Bogomaz D.I. Demkovich A.E., Lutova L.A. Molecular markers for plant species identification and phylogenetics. Ecological Genetics. 2011;9(1):32-43. [in Russian]. DOI: 10.17816/ecogen9132-43

24. Mohanty A., Martín J.P., Aguinagalde I. Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theoretical and Applied Genetics. 2000;100(8):1304-1310. DOI: 10.1007/s001220051439

25. Mohanty A., Martín J.P., Aguinagalde I. Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers. American journal of botany. 2002;89(8):1223-1228. DOI: 10.3732/ajb.89.8.1223

26. Mohanty A., Martín J.P., González L.M., Aguinagalde I. Association between chloroplast DNA and mitochondrial DNA haplotypes in Prunus spinosa L. (Rosaceae) populations across Europe. Annals of Botany. 2003;92(6):749-55. DOI: 10.1093/aob/mcg198

27. Mowrey B.D., Werner D.J. Phylogenetic relationships among species of Prunus as inferred by isozymes markers. Theoretical and Applied Genetics. 1990;80:129-133. DOI: 10.1007/BF00224026

28. Murawski H.B. Die beteutung der poliploidie für die evolution der pflaume. Berlin: Tagungen. Dtsch. Akad. Landwirtschafte Wiss; 1970. [In German]

29. Nas M.N., Bolek Y., Bardak A. Genetic diversity and phylogenetic relationships of Prunus microcarpa C.A. Mey. subsp. tortusa analyzed by simple sequence repeats (SSRs). Scientia Horticulturae. 2011;127(3):220-227. DOI: 10.1016/j.scienta.2010.09.018

30. Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., Morgan D.R., Kerr M., Robertson K. R., Arsenault M., Dickinson T.A., Campbell C.S. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution. 2007;266:5-43. DOI: 10.1007/s00606-007-0539-9

31. Rybin W.A. Spontane und experimentell erzeugte bastarde zwischen schwarzdorn und kirschpflaume und das abstammungsproblem der kulturpflaume. Planta. 1936;25:22-58. [in German] DOI: 10.1007/BF01909303

32. Reales A., Sargent D.J., Tobutt K.R., Rivera D. Phylogenetics of Eurasian plums, Prunus L. section Prunus (Rosaceae), according to coding and non-coding chloroplast DNA sequences. Tree Genetics & Genomes. 2010;6(1):37-45. DOI: 10.1007/s11295-009-0226-9

33. Rehder A. A manual of cultivated trees and shrubs hardy in North America, 2nd edn. New York: Macmillan; 1940.

34. Reynders-Aloisi S., Grellet E. Characterization of the ribosomal DNA units in two related Prunus species (P. cerasifera and P. spinosa). Plant Cell Reports. 1994;13:641-646. DOI: 10.1007/BF00232937

35. Shaw J., Lickey E.B., Schilling E.E., Small R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany. 2007;94:275-288. DOI: 10.3732/ajb.94.3.275

36. Sayed H.A., Mostafa S., Haggag I.M., Hassan N.A. DNA barcoding of Prunus species collection conserved in the National Gene Bank of Egypt. Molecular Biotechnology. 2023;65(3):410-418. DOI: 10.1007/s12033-022-00530-z

37. Stothard P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000;28:1102-1104. Version 2. Available from: https://www.bioinformatics.org/sms2/ [accessed Jun. 25, 2025].

38. Taberlet P., Gielly L., Pautou G., Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant molecular biology. 1991;17(5):1105-9. DOI: 10.1007/BF00037152

39. Ternjak T., Barreneche T., Šiško M., Ivančič A., Šušek A., Quero-García J. Genetic diversity and structure of Slovenian native germplasm of plum species (P. domestica L., P. cerasifera Ehrh. and P. spinosa L.). Frontiers of plant science. 2023;14:1150459. DOI: 10.3389/fpls.2023.1150459

40. Untergasser A. Primer3-org/ primer3plus. GitHub, Inc. Supported by EMBL Heidelberg. Available at: https://www.primer3plus.com [accessed Jun. 15, 2025].

41. Vitkovsky V.L. Fruit plants of the world (Plodoviye rasteniya mira). St. Petersburg; Moscow; Krasnodar: Lan; 2003. [in Russian]

42. Watkins R. Cherry, plum, peach, apricot and almond. In: N.W. Simmonds (ed.). Evolution of crop plants. London, UK: Longman; 1976. p.242-247.

43. Wolfe A.D., Randle C.P. Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Systematic Botany. 2004;29(4):1011-1020. DOI: 10.1600/0363644042451008

44. Zhebentyayeva T., Shankar V., Scorza R., Callahan A., Ravelonandro M., Castro S., DeJong T., Saski C.A., Dardick C. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Horticulture Research. 2019;6:12. DOI: 10.1038/s41438-018-0090-6

45. Zhukovsky P.M. Cultivated plants and their relatives: systematics, geography, cytogenetics, immunity, ecology, origin, and utilization (Kul’turnyie rasteniya i ikh sorodichi). Leningrad: Kolos; 1971. [in Russian]

46. Zohary D., Hopf M. Domestication of plants in the old world. Oxford, UK: Oxford University Press; 2000.


Supplementary files

1. Supplement
Subject Accessions in the experimental set and the plastid DNA haplotypes identified in them
Type Анализ данных
Download (39KB)    
Indexing metadata ▾

Review

For citations:


Makaov A.K., Radchenko O.E., Krivoruchko K.R., Antonova O.Yu. CAPS markers for the analysis of plastid DNA polymorphism in representatives of the subgenus Prunophora (Neck. ex Spach) Focke of the genus Prunus L. Plant Biotechnology and Breeding. 2025;8(3):32-42. (In Russ.) https://doi.org/10.30901/2658-6266-2025-3-o3

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)