Preview

Plant Biotechnology and Breeding

Advanced search

Features of carthamin synthesis in inflorescences of safflower Carthamus tinctorius L.

https://doi.org/10.30901/2658-6266-2025-4-o2

Abstract

Safflower (Carthamus tinctorius L.), a member of the Asteraceae family, is an important oilseed crop; its seeds are rich in fatty acids, particularly oleic and linoleic. Safflower is also used for ornamental purposes and has been extensively cultivated in many countries for centuries. In recent years, secondary metabolites obtained from safflower inflorescences, particularly flavonoids, have attracted particular interest. Safflower flavonoids can be divided into two groups: specialized flavonoids, represented by quinochalcones, and general ones. Many of these substances significantly influence the color of safflower inflorescences, which changes depending on the flowering stage (from yellow to orange and red at fading). Safflower flavonoids are widely used in medicine and as natural dyes in the manufacture of fabrics, cosmetics, and in the food industry. The process of pigment biosynthesis in inflorescences is still being studied; many stages remain unexplored, and the mechanical aspects of their formation are unknown. Of particular interest is the synthesis of the red pigment, carthamin, a unique dimeric quinochalcone extracted only from orange and red safflower inflorescences. When properly purified, this pigment acquires a metallic golden sheen. A 2021 study used safflower inflorescences for extracting carthamin synthase (CarS) proteins responsible for the final step in converting precarthamin to carthamin. The CarS genes (CtPOD1, CtPOD2, and CtPOD3) are expressed in safflower tissues regardless of flower color. Presumably, precarthamin accumulates in corolla cellular structures that are physically separated from the cellular compartment containing CarS. During floral senescence, cells degrade, allowing CarS to interact with precarthamin and form carthamin, which is adsorbed by the corolla cell wall, thereby stabilizing the red pigmentation. This review summarizes data on the specifics of carthamin synthesis, particularly the final step – the conversion of precarthamin to carthamin and its accumulation in inflorescences.

About the Author

V. D. Bemova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Россия

Viktoria D. Bemova, Junior Researcher, Laboratory of Genetics, Breeding and Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



References

1. Azami K., Hayashi T., Kusumi T., Ohmori K., Suzuki K. Total synthesis of carthamin, a traditional natural red pigment. Angewandte Chemie International Edition. 2019;58: 5321-5326. DOI: 10.1002/anie.201900454.

2. Davies K.M., Jibran R., Zhou Y., Albert N.W., Brummell D.A., Jordan B.R., Bowman J.L., Schwinn K.E. The evolution of flavonoid biosynthesis: a bryophyte perspective. Frontiers in Plant Science. 2020;11:7. DOI: 10.3389/fpls.2020.00007

3. Guo D-D., Liu F., Tu Y-H., He B-X., Gao Y., Guo M-L. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis. PLoS One. 2016;11(7):e0158159. DOI: 10.1371/journal.pone.0158159

4. Gupta R.K., Singh S.B. Diallel analysis for seed yield, oil content and other economic traits in safflower (Carthamus tinctorius L.). Genetika-Yugoslavia. 1988;20:161-173.

5. Hartman A. Inheritance of corolla color in safflower (Carthamus tinctorius L.). Davis: University of California. 1967;76:2.

6. Kametaka T., Perkin A.G. CXXX. – Carthamine. Part I. Journal of the Chemical Society, Transactions. 1910;97:1415-1427. DOI: 10.1039/CT9109701415

7. Kanehira T., Saito K. Decomposition of carthamin by peroxidases from Carthamus tinctorius. Biochemie und Physiologie der Pflanzen. 1990;186(3):179-187. DOI: 10.1016/S0015-3796(96)80006-0

8. Knowles P.F. Variability in oleic and linoleic acid contents of safflower oil. Economic Botany. 1965;19:53-62. DOI: 10.1007/BF02971186

9. Kosoto H. The history of Chinese drugs recorded in the ‘‘Japanese Pharmacopoeia. Fifteenth Edition”. Japanese Society of Pharmacognosy. 2007;61:68-78. [in Japanese]

10. Kotecha A. Inheritance and association of six traits in safflower. Crop Science. 1979;19(4):523-527. DOI: 10.2135/cropsci1979.0011183X001900040022x

11. Kumazawa T., Amano Y., Haga T., Matsuba S., Sato S., Kawamoto K., Onodera J. Synthesis of model compounds of the precursor of carthamin, a colouring matter of safflower, and their conversion into carthamin-type compounds. Chemistry Letters. 1995;24(8):625-626.

12. Leus T.V. Interallelic interactions genes’ types in inheritance of corolla colour of safflower. Bulletin of St. Petersburg University. 2016;3(4):108-116. [in Russian]. DOI: 10.21638/11701/spbu03.2016.408

13. Liu X.M., Ahmad N., Yang L.Y., Fu T.Y., Kong J., Yao N., Dong Y.Y., Wang N., Li X.W., Wang F.W., Liu X., Liu W.C., Li H.Y. Molecular cloning and functional characterization of chalcone isomerase from Carthamus tinctorius. AMB Express. 2019;9(1):132. DOI: 10.1186/s13568-019-0854-x

14. Liu X.M., Dong Y.Y., Yao N., Zhang Y., Wang N., Cui X.Y., Li X.W., Wang Y.F., Wang F.W., Yang J., Guan L.L., Du L.N., Li H.Y., Li X.K. De novo sequencing and analysis of the safflower transcriptome to discover putative genes associated with safflor yellow in Carthamus tinctorius L. International Journal of Molecular Science. 2015;16(10):25657-25677. DOI: 10.3390/ijms161025657

15. Narkhede B.N., Deokar A.B. Inheritance of corolla color in safflower. Journal of the Maharashtra Agricultural Universities 1986;11:278-281.

16. Narkhede B.N., Deokar A.B. Inheritance of spininess and pericarp types in safflower. Journal of the Maharashtra Agricultural Universities 1990;15:279-281.

17. Pahlavani M.H., Saeidi G., Mirlohi A.F. Inheritance of flower color and spininess in safflower (Carthamus tinctorius L.). Journal of Heredity. 2004;95:265-267. DOI: 10.1093/jhered/esh030.

18. Pu Z., Zhang S., Tang Y., Shi X., Tao H., Yan H., Chen J., Yue S., Chen Y., Zhu Z., Zhou G., Su S., Duan J. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. Journal of Separation Science. 2021;44(22):4082-4091. DOI: 10.1002/jssc.202100439.

19. Rakhmangulov R.S. Application of the CRISPR/Cas system for gene editing in ornamental crops. Plant Biotechnology and Breeding. 2022;5(3):33-41. [in Russian]. DOI: 10.30901/2658-6266-2022-3-o1

20. Rakhmangulov R.S., Tikhonova N.G. Breeding of ornamental plants in Russia. Plant Biotechnology and Breeding. 2021;4(4):40-54. [in Russian]. DOI: 10.30901/2658-6266-2021-4-o4

21. Ren C., Chen C., Dong S., Wang R., Xian B., Liu T., Xi Z., Pei J., Chen J. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower (Carthamus tinctorius L.) during colour-transition. PeerJ. 2022;10:e13591. DOI: 10.7717/peerj.13591

22. Ren C.X., Tang X.H., Chen C.P., Chen J., Pei J., Wu Y.Y., Wu Q.H. Cloning and expression analysis of a new chalcone isomerase gene during flowering in safflower. Turkish Journal of Botany. 2019;43(2):143-150. DOI: 10.3906/bot-1809-25

23. Saito K. Glucose oxidase, a potential contributor towards flower colour modification in the capitula of Carthamus tinctorius L. Biochemie und Physiologie der Pflanzen. 1993;188:405-417.

24. Saito K., Miyakawa K.-I., Murata T., Enomoto Y. Phytohormone-mediated induction of red colour in the flower florets of a cultivar of dyer’s saffron (Carthamus tinctorius). Zeitschrift fur Naturforschung C. 1998;53(9-10):828-832. DOI: 10.1515/znc-1998-9-1008

25. Sato S., Obara H., Kumazawa T., Onodera J., Furuhata K. Synthesis of (+), (−)-Model compounds and absolute configuration of carthamin; a red pigment in the flower petals of safflower. Chemistry Letters. 1996;25:833-834.

26. Seshadri T.R., Thakur R.S. The coloring matter of the flowers of Carthamus tinctorius. Current Science. 1960;29:54-55.

27. Shimokoriyama M., Hattori S. On the formation of carthamin in the flowers of Carthamus tinctorius. Archives of Biochemistry and Biophysics. 1955;54:93-101.

28. Singer A.C., Crowley D.E., Thompson I.P. Secondary plant metabolites in phytoremediation and biotransformation. Trends in Biotechnology. 2003;21(3):123-130. DOI: 10.1016/S0167-7799(02)00041-0

29. Tamburini D., Dyer J., David P., Aceto M., Turina V., Borla M., Vandenbeusch M., Gulmini M. Compositional and micro-morphological characterisation of red colourants in archaeological textiles from Pharaonic Egypt. Molecules. 2019;24(20):3761. DOI: 10.3390/molecules24203761

30. Tu YH, Liu F., Guo DD., Fan LJ., Zhu ZX., Xue YR., Gao Y., Guo ML. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC Plant Biology. 2016;16:132. DOI: 10.1186/s12870-016-0813-5

31. Urage E., Weyessa B. Genetic diversity of Ethiopian safflower collections. In: V. Ranga Rao, M. Ramachandran, (eds) Proceedings Second International Safflower Conference; 1989 Jan. 9-13; Hyderabad, India. Indian Society of Oilseeds Research, Directorate of Oilseeds Research; 1991. p. 175-178.

32. Vakhrusheva T.E., Ivanenko E.N. Descriptor list for the species Carthamus tinctrorius L. (safflower) (Klassifikator vida Carthamus tinctorius L. (saflor krasil'nyi). V.A. Korneichuk (ed.). Leningrad: VIR; 1985. [in Russian]

33. Waki T., Terashita M., Fujita N., Fukuda K., Kato M., Negishi T., Uchida H., Aoki Y., Takahashi S., Nakayama T. Identification of the genes coding for carthamin synthase, peroxidase homologs that catalyze the final enzymatic step of red pigmentation in safflower (Carthamus tinctorius L.). Plant Cell Physiology. 2021;62(10):1528-1541. DOI: 10.1093/pcp/pcab122

34. Wang R., Ren C.X., Dong S., Chen C., Xian B., Wu Q.H., Wang J., Pei J., Chen J. Integrated metabolomics and transcriptome analysis of flavonoid biosynthesis in safflower (Carthamus tinctorius L.) with different colors. Frontiers in Plant Science. 2021;12:712038. DOI: 10.3389/fpls.2021.712038

35. Watanabe S. Cultivation, introduction, and historical note of the Benibana (safflower: Carthamus tinctorius L.) in Yamagata Prefecture. Journal of the Yamagata Agriculture and Forestry Society. 1977;34:73-76.

36. Wen W.W., Alseekh S., Fernie A.R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Current Opinion in Plant Biology. 2020;55:100-108. DOI: 10.1016/j.pbi.2020.04.004

37. Yang W.T., Liu X.M., Wan Q., Yao N., Wang N., Zhang X.M., Jiao Z.D., Li H.Y., Li X.K. Full-length cDNA cloning of flavonol synthase genes of Carthamus tinctorius and construction plant expression vector. Zhongguo Zhong Yao Za Zhi. 2015;40(4):634-638. [in Chinese]

38. Yue S., Tang Y., Li S., Duan J.A. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules. 2013;18(12):15220-15254. DOI: 10.3390/molecules181215220


Review

For citations:


Bemova V.D. Features of carthamin synthesis in inflorescences of safflower Carthamus tinctorius L. Plant Biotechnology and Breeding. (In Russ.) https://doi.org/10.30901/2658-6266-2025-4-o2

Views: 51

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)