Preview

Plant Biotechnology and Breeding

Advanced search

Optimization of in vitro protocols for VIR cultivars of watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai

https://doi.org/10.30901/2658-6266-2025-3-o5

Abstract

Background. Citrullus lanatus (Thunb.) Matsum. & Nakai is an important cucurbit crop. The efficiency of in vitro methods is limited by the genotype-specific response of explants to culture media composition, which necessitates protocol optimization for commercially important cultivars. Materials and methods. Nine watermelon cultivars bred at VIR were studied. The research used modified MS culture media for introducing explants into in vitro culture, as well as various combinations of phytohormones (BAP, NUK, IUK, 2,4-D, and TDZ) for rooting, callus formation, and regeneration. Statistical analysis was performed using Fisher’s exact test (p<0.05). Results. Hormone-free culture media ensured the introduction of up to 88% of viable explants into in vitro culture. On the NAA-supplemented media, rooting reached 70-88%. Optimal callus induction (up to 100%) was observed on the medium with 0.5 mg/L BAP and 0.1 mg/L 2,4-D, while regeneration was most effective on the medium with 1 mg/L BAP and 0.1 mg/L NAA. Conclusion. The stages of in vitro explant cultivation for various watermelon cultivars have been optimized, ensuring highly efficient introduction into culture, callus formation, and regeneration, thus creating a basis for subsequent biotechnological research.

About the Authors

A. V. Inozemtseva
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Anastasiia V. Inozemtseva, Postgraduate Student, Junior Researcher, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



A. Ya. Evlash
Sirius University of Science and Technology
Russian Federation

Anastasia Ya. Evlash, Junior Researcher, Sirius University of Science and Technology, Research Center of Genetics and Life Sciences

1, Olimpiysky Avenue, Sirius Federal Territory, Krasnodar Region, 354340 Russia



A. G. Elatskova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Kuban Experiment Station, a branch of VIR
Russian Federation

Anna G. Elatskova, Cand. Sci. (Agriculture), Senior Researcher, VIR, Kuban Experiment Station, a branch of VIR

2, Tsentralnaya Street, Botanika Settlement, Krasnodar Region, 352183 Russia



E. K. Khlestkina
N.I. Vavilov All-Russian Institute of Plant Genetic Resources; Sirius University of Science and Technology
Russian Federation

Elena K. Khlestkina, Dr. Sci. (Biology), Corr. Mem. of the RAS, Director, VIR; Sirius University of Science and Technology, Research Center of Genetics and Life Sciences

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia; 1, Olimpiysky Avenue, Sirius Federal Territory, Krasnodar Territory, 354340 Russia



N. A. Shvachko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Nataliya A. Shvachko, Cand. Sci. (Biology), Leading Researcher, Acting Deputy Director for Scientific and Organizational Work, Acting Head, Laboratory of Postgenomic Research, VIR

42, 44, Bolshaya Morskaya Street, St. Petersburg, 190000 Russia



References

1. Abdollahi M.R, Najafi S, Sarikhani H, & Мoosavi S.S. Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turkish Journal of Biology. 2016;40(3):571-579. DOI: 10.3906/biy-1502-55

2. Badr-Elden A.M., Nower A.A., Ibrahim I.A., Ebrahim M.K., & Elaziem T.M. Minimizing the hyperhydricity associated with in vitro growth and development of watermelon by modifying the culture conditions. African Journal of Biotechnology. 2012;11(35):8705-8717. DOI: 10.5897/AJB11.4276

3. Compton M.E., Gray D.J. Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid, and tetraploid watermelon. Journal of the American Society for Horticultural Science. 1993a;118(1):151-157. DOI: 10.21273/JASHS.118.1.151

4. Compton M.E., Gray D.J. Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Reports. 1993b;12(2):61-65. DOI: 10.1007/BF00241935

5. Dong J.Z., Jia S.R. High-efficiency plant regeneration from cotyledons of watermelon (Citrullus vulgaris Schrad). Plant Cell Reports. 1991;9(10):559-562. DOI: 10.1007/BF00232331

6. Hamdeni I., Louhaichi M., Slim S., Boulila A., Bettaieb T. Incorporation of organic growth additives to enhance in vitro tissue culture for producing genetically stable plants. Plants. 2022;11(22):3087. DOI: 10.3390/plants11223087

7. Khatun M.M., Hossain M.S., Khalekuzzaman M., Rownaq A., Rahman M. In vitro plant regeneration from cotyledon and internodes derived callus in watermelon (Citrulus lanatus Thumb.). International Journal of Sustainable Crop Production. 2010;5(4):25-29.

8. Krug M.G.Z., Stipp L.C.L., Rodriguez A.P.M., Mendes B.M.J. In vitro organogenesis in watermelon cotyledons. Pesquisa Agropecuária Brasileira. 2005;40(9):861-865. DOI: 10.1590/S0100-204X2005000900004

9. Li J., Li X.M., Qin Y.G., Tang Y., Wang L., Ma C., Li H.X. Optimized protocol for plant regeneration of watermelon (Citrullus lanatus Thunb.). African Journal of Biotechnology. 2011;10(48):9760-9765. DOI: 10.5897/AJB11.550

10. Liu C., Guo Y., Li H., Fan Y., Wang J., Liu J., Zhang H. Establishment of a shoot-tip regeneration system of watermelon. HortScience. 2024;59(9):1419-1421. DOI: 10.21273/HORTSCI18094-24

11. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x

12. Sultana R.S., Bari M.A. Effect of different plant growth regulators on direct regeneration of watermelon (Citrulus lanatus Thunb.). Plant Tissue Culture. 2003;13(2):173-177.

13. Tekhanovich G.A., Yelatskova A.G., Yelatskov Y.A. The role of VIR’s global collection of cucurbitaceous crops in plant breeding. Proceedings on Applied Botany, Genetics and Breeding. 2012;169:289-294. [in Russian]

14. Tekhanovich G.A., Elatskova A.G., Elatskova Yu.A. Genetic sources for breeding bushy and short-vine watermelon cultivars. Proceedings on Applied Botany, Genetics and Breeding. 2019;180(2):89-94. [in Russian]. DOI: 10.30901/2227-8834-2019-2-89-94

15. Venkatachalam P., Jinu U., Sangeetha P., Geetha N., Sahi S.V. High-frequency plant regeneration from cotyledonary node explants of Cucumis sativus L. ‘Green Long’ via adventitious shoot organogenesis and assessment of genetic fidelity by RAPD-PCR. 3 Biotech. 2018;8(1):60. DOI: 10.1007/s13205-018-1083-8

16. Wang X., Shang L., Luan F. A highly efficient regeneration system for watermelon (Citrullus lanatus). Pakistan Journal of Botany. 2013; 45(1):145-150.

17. Yalcin-Mendia N.Y., Ipek M., Kacan H., Curuk S., Sari N., Cetiner S., Gaba V. A histological analysis of regeneration in watermelon. Journal of Plant Biochemistry and Biotechnology. 2003;12(2):75-79. DOI: 10.1007/BF03263176


Supplementary files

1. Supplement. Description of the cultivar ‘‘Charl'ston grey’, obtained from the cultivar ‘Charleston Gray’ (USA, к-4128, see Table 1) as a result of selection for disease resistance and included in the State Register of varieties and hybrids of agricultural plants approved for use (RF, Code in the State Register, 8954475)
Subject
Type Данные
Download (183KB)    
Indexing metadata ▾

Review

For citations:


Inozemtseva A.V., Evlash A.Ya., Elatskova A.G., Khlestkina E.K., Shvachko N.A. Optimization of in vitro protocols for VIR cultivars of watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai. Plant Biotechnology and Breeding. 2025;8(3):7-18. (In Russ.) https://doi.org/10.30901/2658-6266-2025-3-o5

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)