Preview

Plant Biotechnology and Breeding

Advanced search

Marker assisted selection of potato breeding lines with combination of PVY resistance genes from different wild species

https://doi.org/10.30901/2658-6266-2019-4-o1

Abstract

Potato virus Y (PVY) is considered as one of the most harmful virus infections of this crop. Thus, it is a topical problem to breed potato varieties resistant against a wide range of PVY strains and to create initial breeding material that will have a combination of resistance genes from different species. The aim of the study was: (1) to genotype a collection of 376 breeding lines (BL), developed from complex interspecific hybrids, using DNA markers of PVY resistance genes, (2) to identify accessions with markers of resistance genes from different species for subsequent use in marker assisted selection (MAS), (3) to evaluate the suitability of DNA markers of PVY resistance genes for genotyping BL developed through interspecific hybridization. It was ascertained that the markers most widely represented in the collection were RYSC3 of the Ryadg gene (49.7%), Ry364 and RAPD38-530 of the Rychc gene (50.5% and 45.2%, respectively), and Yes3-3A of the Rysto gene (29.8%). The markers Ry186 of Rychc and GP122/EcoRV780 of  Ryf-sto  were found only in some accessions. The frequency of occurrence of BL that had markers of PVY resistance genes from two different species varied between 2.7% (Yes3-3a marker of Rysto and both two markers of Rychc) and 8.5-9.0% (RYSC3 marker of Ryadg and both two markers of Rychc, or only Ry364 marker of this gene). In total, the collection was found to contain 134 BL (47.6%) with markers of resistance genes from two different species. A combination of four markers for three genes of different origin (Ryadg, Rysto and Rychc) was found in 27 BL (7.2%). Extreme resistance to PVY of most BL (302 out of 357) was obviously determined by the presence in them of the currently used resistance genes detected by DNA markers applied in the study. Nevertheless, a significant part of accessions (55 of 61) that did not have any markers was resistant to PVY. At the same time, 13 BL (3.5%) with the markers were susceptible to the virus. Such a level of discrepancies is considered as acceptable for the initial MAS of breeding material. The obtained data on the presence of the markers of PVY resistance genes of different origin and their combination in BL ensures a more effective use of such BL in breeding in comparison with the BL resistant to the virus, though lacking corresponding markers. 

About the Authors

E. V. Voronkova
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
27 Akademicheskaya Street, Minsk 220072


N. V. Rusetskiy
Scientific and Practical Center of the National Academy of Sciences of Belarus for Potato, Fruit and Vegetable Growing
Belarus

2a Kovalev Street, Samokhvalovichy, 223013 Minsk region



V. I. Luksha
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
27 Akademicheskaya Street, Minsk 220072


O. B. Gukasian
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
27 Akademicheskaya Street, Minsk 220072


V. M. Zharich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
27 Akademicheskaya Street, Minsk 220072


A. P. Yermishin
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
27 Akademicheskaya Street, Minsk 220072


References

1. Biryukova V.A., Smyglya I.V., Abrosimova S.B., Zapekina T.I., Meleshin A.A., Mityushkin A.V., Manakov V.V. Search for sources of resistance to pathogens among the accessions of Lorch Potato Research Institute genetic and breeding collections by means of molecular markers. Zaschita Cartofelia = Potato Protection. 2015;(1):3-7 [in Russian]

2. Blotskaya Zh.V. Strain-specificity of potato virus Y (PVY) (Shtammospetsificheskiye osobennosti Y-virusa kartofelya (PVY)). Zemledelie I Zaschita Rasteniy = Crop Farming and Plant Protection. 2014;(4):49-50 [in Russian]

3. Brown C.R., Kim T.S., Ganga Z., Haynes K., De Jong D., Jahn M., Paran I., De Jong W. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. American Journal of Potato Research. 2006;83(5):365-372. DOI: 10.1007/BF02872013

4. Cockerham G. Genetical studies on resistance to potato viruses X and Y. Heredity. 1970;25(3):309-348. DOI: 10.1038/hdy.1970.35

5. De Ronde D., Butterbach P., Kormelink R. Dominant resistance against plant viruses. Frontier of Plant Science. 2014;5:307.DOI: 10.3389/fpls.2014.00307

6. Fadina O.A., Beketova M.P. Sokolova M.A., Smetanina T.I., Rogozina E.V., Khavkin E.E. Anticipatory breeding: molecular markers as a tool in developing donors of potato (Solanum tuberosum L.) late blight resistance from complex interspecific hybrids. Agricultural Biology. 2017;52(1):84-94 [in Russian] DOI: 10.15389/agrobiology.2017.1.84rus

7. Flis B., Hennig J., Strzelczyk-Żyta D., Gebhardt C., Marczewski W. The Ry-fsto gene from Solanum stoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Molecular Breeding. 2005;15(1):95-101. DOI: 10.1007/s11032-004-2736-3

8. Fulladolsa A.C., Navarro F.M., Kota R., Severson K., Palta J.P., Charkowski A.O. Application of marker assisted selection for Potato virus Y resistance in the University of Wisconsin Potato Breeding Program. American Journal of Potato Research. 2015;92(3):444-450. DOI: 10.1007/s12230-015-9431-2

9. Fulladolsa A.C., Charkowski A., Cai X., Whitworth J., Gray S., Jansky S. Germplasm with resistance to potato virus Y derived from Solanum chacoense: clones M19 (39–7) and M20 (XD3). American Journal of Potato Research. 2019;96(4):390-395. DOI: 10.1007/s12230-019-09719-6

10. Haverkort A.J., Boonekamp P.M., Hutten R., Jakobsen E., Lotz L.A.P., Kessel G.J.T., Vossen J.H., Visser R.G.F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh Project. Potato Research. 2016;59(1):35-66. DOI: 10.1007/s11540-015-9312-6

11. Hosaka K., Hosaka Y., Mori M., Maida T., Matsunaga H. Detection of simplex RAPD marker linked to resistance to potato virus Y in tetraploid potato. American Journal of Potato Research. 2001;78(3):191-196. DOI: 10.1007/BF02883544

12. Ivanyuk V.G., Banadysev S.A., Zhuromsky G.K. Protecting potatoes from diseases, pests and weeds (Zaschita kartofelya ot bolezney, vrediteley i sornyakov). Minsk: Belprint; 2005. p.420-466 [in Russian]

13. Kasai K., Morikawa Y., Sorri V.A., Valkonen J.P.T., Gebhardt C., Watanabe K.N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome. 2000;43(1):1-8. DOI: 10.1139/g99-092

14. Lakin G.F. Biometrics (Biometriya). Moscow: Vysshaya shkola; 1980. p.176-177 [in Russian] (Лакин Г.Ф. Биометрия. Москва: Высшая школа; 1980. C.176-177).

15. Mori K., Sakamoto Yu., Mukojima N., Tamiya S. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica. 2011;180(3):347-355. DOI: 10.1007/s10681-011-0381-6.

16. Mori K., Mukojima N., Nakao T., Tamiya S., Sakamoto Y., Sohbaru N., Hayashi K., Watanuki H., Nara K., Yamazaki K., Ishii T., Hosaka K. Germplasm release: Saikai35, a male and female fertile breeding line carrying Solanum Phureja-derived cytoplasm and potato cyst nematode resistance (H1) and potato virus Y resistance (Rychc) genes. American Journal of Potato Research. 2012;89(1):63-72. DOI: 10.1007/s12230-011-9221-4

17. Nie X., Sutherland D., Dickison V., Singh M., Murphy A.M., De Koeyer D. Development and validation of high-resolution melting markers derived from Rysto STS markers for highthroughput marker-assisted selection of potato carrying Rysto. Phytopathology. 2016;106(11):1366-1375. DOI: 10.1094/PHYTO05-16-0204-R

18. Ottoman R.J., Hane D.C., Brown C.R., Yilma S., Mosley A.R., Vales M. Validation and implementation of marker-assisted selection (MAS) for PVY resistance (Ryadg gene) in tetraploid potato breeding. American Journal of Potato Research. 2009;86(4):304-314. DOI: 10.1007/s12230-009-9084-0

19. Rogozina E.V., Terentjeva E.V., Potokina E.K., Yurkina E.N., Nikulin A.V., Alekseev Ya.I. Multiplex PCR-based identification of potato genotypes as donors in breeding for resistance to diseases and pests. Agricultural Biology. 2019;54(1):19-30 [in Russian] DOI: 10.15389/agrobiology.2019.1.19rus

20. Ross H. Potato breeding – problems and perspectives. Berlin, Hamburg: Paul Parey, Advances in Plant Breeding series no. 13; 1986. 132 p.

21. Rusetskiy N.V. Initial material assessment of potatoes for immunity to potato viruses (Otsenka iskhodnogo materiala kartofelya na immunitet k virusam kartofelya). In: Kartofelevodstvo = PotatoGrowing: proceedings. Minsk; 2018. Vol. 26. p.101-111 [in Russian]

22. Rusetskiy N.V., Voronkova E.V. Initial potato material screening for resistance to PVY and PVX and study of the nature of its inheritance for the use as donor of this character in breeding for virus resistance (Vydeleniye iskhodnogo materiala kartofelya na ustoychivost k virusam PVY i PVX i izucheniye kharaktera yeye nasledovaniya dlya ispolzovaniya v kachestva donorov priznaka v selektsii na virusoustoychivost.). In: Kartofelevodstvo = PotatoGrowing: proceedings. Minsk; 2017. Vol. 25. p.82-93 [in Russian]

23. Sato M., Nishikawa K., Komura K., Hosaka K. Potato virus Y resistance gene, Rychc, mapped to the distal end of potato chromosome 9. Euphytica. 2006;149(3):367-372. DOI: 10.1007/s10681-006-9090-y

24. Scholthof K.G., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T., Ahlquist P., Hemenway C., Foster G.D. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology. 2011;12(9):938-954. DOI: 10.1111/j.1364-3703.2011.00752.x

25. Solomon-Blackburn R.M., Barker H. A review of host major-gene resistance to potato viruses X, Y, A and V in potato: genes, genetics and mapped location. Heredity. 2001a;86(1):8-16. DOI: 10.1046/j.1365-2540.2001.00798.x

26. Solomon-Blackburn R.M., Barker H. Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity. 2001b;86(1):17-35. DOI: 10.1046/j.1365-2540.2001.00799.x

27. Song Ye-S., Hepting L., Schweizer G., Hartl L., Wenzel G., Schwarzfischer A. Mapping of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived primary dihaploid lines. Theoretical and Applied Genetics. 2005;111(5):879-887. DOI: 10.1007/s00122-005-0010-7

28. Song Ye-S., Schwarzfischer A. Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research. 2008;85(5):159-170. DOI: 10.1007/s12230-008-9044-0.

29. Sorri V.A., Watanabe K.N., Valkonen J.P.T. Predicted kinase-3a motif of a resistance gene analogue as a unique marker for virus resistance. Theoretical and Applied Genetics. 1999;99(1):164-170.

30. Tomczyńska I., Jupe F., Hein I., Marczewski W., Śliwka J. Hypersensitive response to Potato virus Y in potato cultivar Sarpo Mira is conferred by the Ny-Smira gene located on the long arm of chromosome IX. Molecular Breeding. 2014;34(2):471-480. DOI: 10.1007/s11032-014-0050-2

31. Vales M.I., Ottoman R.J., Ortega J.A., Yilma S., Karaagac E. Marker-Assisted Selection for PVY resistance in tetraploid potato. Acta Horticulturae. 2010;859:409-416. DOI:10/17660/ActaHortic.2010.859.50

32. Valkonen J.P.T., Wiegmann K., Hämäläinen J.H., Marczewski W., Watanabe K.N. Evidence for utility of the same PCR-based markers for selection of extreme resistance to Potato virus Y controlled by Rysto of Solanum stoloniferum derived from different sources. Annual Applied Biology. 2008;152(1):121-130. DOI: 10.1111/j.1744-7348.2007.00194.x

33. Voronkova E., Luksha V., Gukasian O. Levy A., Yermishin A. Novel DNA locus associated with PVY resistance in potato is mapped to chromosome V. In: 16th Triennial Meeting of the Virology Section of the EAPR and 8th Annual Meeting of PVYWIDE Organization; 2016 May 31 - June 3; Lubljana, Slovenia. Liubljana; 2016. p.30.

34. Voronkova E.V., Luksha V.I., Rusetskiy N.V., Gukasyan O.N., Zharich V.M., Polyukhovich Yu.V., Yermishin A.P. Marker assisted selection of genotipes with Rychc gene of extreme resistance to PVY in genotypes collection with Solanum chacoense germplasm in their pedigree. In: Kartofelevodstvo = Potato Growing: proceedings. Minsk; 2017a. Vol. 25. p.47-59 [in Russian]

35. Voronkova E.V., Luksha V.I., Gukasyan O.N., Polyukhovich Yu.V., Zharich V.M., Yermishin A.P. Use of mitotic chromosome doubling in vitro for production of potato multiplex parental lines. In: Molekulyarnaya i Prikladnaya Genetika = Molecular and Applied Genetics: proceedings. Minsk; 2017b. Vol. 22. p.62-75 [in Russian]

36. Zimnoch-Guzowska E., Yin Zh., Chrzanovska M., Flis B. Sources and effectiveness of potato PVY resistance in IHAR’s breeding research. American Journal of Potato Research. 2013;90(1):21-27. DOI: 10.1007/s12230-012-9289-5

37. Zoteyeva N., Chrzanovska M., Flis B., Zimnoch-Guzowska E. Resistance to pathogens of the potato accessions from the collection of N. I. Vavilov Institute of Plant Industry (VIR). American Journal of Potato Research. 2012;89(4):277-293. DOI: 10.1007/s12230-012-9252-5


Review

For citations:


Voronkova E.V., Rusetskiy N.V., Luksha V.I., Gukasian O.B., Zharich V.M., Yermishin A.P. Marker assisted selection of potato breeding lines with combination of PVY resistance genes from different wild species. Plant Biotechnology and Breeding. 2019;2(4):6-14. (In Russ.) https://doi.org/10.30901/2658-6266-2019-4-o1

Views: 1035


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)