Методы редактирования генома для увеличения лёжкости плодов томата
https://doi.org/10.30901/2658-6266-2020-1-o6
Аннотация
Об авторе
Ю. В. КузьминаРоссия
199034, г. Санкт-Петербург, Университетская наб., д. 7-9-11
Список литературы
1. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823. DOI: 10.1126/science.1231143
2. Brooks C., Nekrasov V., Lippman Z.B., Van Eck J. Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. Plant Physiology. 2014;166(3):1292-1297. DOI: 10.1104/pp.114.247577
3. Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. DOI: 10.1126/science.1258096
4. Gao Y., Zhu N., Zhu X., Wu M., Jiang C.-Z., Grierson D., Luo Y., Shen W., Zhong S., Fu Da-Qi, Qu G. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Horticulture Research. 2019;6:39. DOI: 10.1038/s41438-019-0122-x
5. Ghogare R., Williamson-Benavides B., Ramírez-Torres F., Dhingra A. CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research. 2019;29(1):1-35. DOI: 10.1007/s11248-019-00181-y
6. Hilioti Z., Ganopoulos I., Bossis I., Tsaftaris A. LEC1-LIKE paralog transcription factor: how to survive extinction and fit in NF-Y protein complex. Gene. 2014;543(2):220-233. DOI: 10.1016/j.gene.2014.04.019
7. Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M., Toki S. CRISPR/ Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications. 2015;467(1):76-82 DOI: 10.1016/j.bbrc.2015.09.117
8. Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M., Shima Y., Nakamura N., Kotake-Nara E., Kawasaki S., Toki S. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato rip ening. Nature Plants. 2017;3(11):866-874. DOI: 10.1038/s41477-017-0041-5
9. Kamburova V.S., Nikitina E.V., Shermatov S.E., Buriev Z.T., Kumpatla S.P., Emani C., Abdurakhmonov I.Y. Genome Editing in Plants: An Overview of Tools and Applications. International Journal of Agronomy. 2017;UNSP 7315351. DOI: 10.1155/2017/7315351
10. Li R., Fu D., Zhu B., Luo Y., Zhu H. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant Journal. 2018;94(3):513-524. DOI: 10.1111/tpj.13872
11. Lor V.S., Starker C.G., Voytas D.F., Weiss D., Olszewski N.E. Targeted Mutagenesis of the Tomato PROCERA Gene Using Transcription Activator-Like Effector Nucleases. Plant Physiology. 2014;166(3):1288-1291. DOI: 10.1104/pp.114.247593
12. Malzahn A., Lowder L., Qi Y. Plant genome editing with TALEN and CRISPR. Cell Bioscience. 2017;7:21. DOI: 10.1186/s13578-017-0148-4
13. Martín-Pizarro C., Posé D. Genome editing as a tool for fruit ripening manipulation. Frontiers of Plant Sciences. 2018;9:1415. DOI: 10.3389/fpls.2018.01415
14. Nemudryi A.A., Valetdinova K.R., Medvedev S.P., Zakiyan S.M. TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae. 2014;6(3):19-40. DOI: 10.32607/20758251-2014-6-3-19-40.
15. Quinet M., Angosto T., Yuste-Lisbona F.J., Blanchard-Gros R., Bigot S., Martinez J.P., Lutts S. Tomato Fruit Development and Metabolism. Frontiers of Plant Sciences. 2019;10:1554. DOI: 10.3389/fpls.2019.01554
16. Shah T., Andleeb T., Lateef S., Noor M.A. Genome editing in plants: Advancing crop transformation and overview of tools. Plant Physiology and Biochemistry. 2018;131(SI):12-21. DOI: 10.1016/j.plaphy.2018.05.009
17. Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. 2013;31(8):686-688. DOI: 1038/nbt.2650
18. Uluisik S., Chapman N.H., Smith R., Poole M., Adams G., Gillis R.B. et al. Genetic improvement of tomato by targeted control of fruit softening. Natural Biotechnology. 2016;34:950-952. DOI: 10.1038/nbt.3602
19. Yang L., Huang W., Xiong F., Xian Z., Su D., Ren M., Li Z. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnology Journal. 2017;15(12):1544-1555. DOI: 10.1111/pbi.12737
20. Yang Y., Zhu G., Li R., Yan S., Fu D., Zhu B., Tian H., Luo Y., Zhu H. The RNA Editing Factor SlORRM4 Is Required for Normal Fruit Ripening in Tomato. Plant Physiology. 2017;175:1690-1702. DOI: 10.1104/pp.17.01265
21. Yu Q.-H., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q., Asmutola P. CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines. Scientific Reports. 2017;7:11874. DOI: 10.1038/s41598-017-12262-1
22. Zhang F., Wen Y., Guo X. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Human Molecular Genetics. 2014;23(R1):R40-R46. DOI: 10.1093/hmg/ddu125
Рецензия
Для цитирования:
Кузьмина Ю.В. Методы редактирования генома для увеличения лёжкости плодов томата. Биотехнология и селекция растений. 2020;3(1):31-39. https://doi.org/10.30901/2658-6266-2020-1-o6
For citation:
Kuzmina Y.V. Methods of genome editing for increasing the shelf life of tomato fruit. Plant Biotechnology and Breeding. 2020;3(1):31-39. (In Russ.) https://doi.org/10.30901/2658-6266-2020-1-o6