Редактирование генов пшеницы, ячменя и кукурузы с использованием системы CRISPR/Cas
https://doi.org/10.30901/2658-6266-2020-1-o2
Аннотация
Ключевые слова
Об авторах
К. В. СтрыгинаРоссия
190000, г. Санкт-Петербург, ул. Б. Морская, 42, 44
Е. К. Хлесткина
Россия
190000, г. Санкт-Петербург, ул. Б. Морская, 42, 44
630090, г. Новосибирск, пр. Академика Лаврентьева, 10
Список литературы
1. Abe F., Haque E., Hisano H., Tanaka T., Kamiya Y., Mikami M., Kawaura K., Endo M., Onishi K., Hayashi T., Sato K. Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat. Cell Reports. 2019;28(5):1362-1369.e4. DOI: 10.1016/j.celrep.2019.06.090
2. Ali Z., Abul-Faraj A., Li L., Ghosh N., Piatek M., Mahjoub A., Aouida M., Piatek A., Baltes N.J., Voytas D.F., Dinesh-Kumar S., Mahfouz M.M. Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System. Molecular Plant. 2015;8(8):1288-1291. DOI: 10.1016/j.molp.2015.02.011
3. Arndell T, Sharma N, Langridge P, Baumann U, Watson-Haigh NS, Whitford R. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnology. 2019;19(1):1-12. DOI: 10.1186/s12896-019-0565-z
4. Bage S.A., Barten T.J., Brown A.N., Crowley J.H., Deng M., Fouquet R., Gomez J.R., Hatton T.W., Lamb J.C., LeDeaux J.R., Lemke B.M., Manjunath S., Marengo M.S., Morales E.Y., Garcia M.O., Peevers J.M., Pellet J.-L., Avendano A.R., Rymarquis L.A., Sridharan K., Valentine M.F., Yang D.H., Cargill E.J.. Genetic characterization of novel and CRISPR-Cas9 gene edited maize brachytic 2 alleles. Plant Gene. 2020;21(2020):100198. DOI: 10.1016/j.plgene.2019.100198
5. Barrero J.M., Cavanagh C., Verbyla K.L., Tibbits J.F.G., Verbyla A.P., Huang B.E., Rosewarne G.M., Stephen S., Wang P., Whan A., Rigault P., Hayden M.J., Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biology. 2015;16(1):93. DOI: 10.1186/s13059-015-0665-6
6. Becker H. Pflanzenzüchtung. Stuttgart: Verlag Eugen Ulmer/UTB für Wissenschaft; 1993. [in German] (Russian Translation: Eds. V.I. Leunov, G.F. Monachos. Moscow: Partnership of scientific publications KMK; 2015. 425 p.).
7. Belhaj K., Chaparro-Garcia A., Kamoun S., Patron N.J., Nekrasov V. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology. 2015;32:76-84. DOI: 10.1016/j.copbio.2014.11.007
8. Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Song H., Gao C., Voytas D.F., Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports. 2018;8(1):1-10. DOI: 10.1038/s41598-018-24690-8
9. Bortesi L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances. 2015;33(1):41-52. DOI: 10.1016/j.biotechadv.2014.12.006
10. Čermák T., Curtin S.J., Gil-Humanes J., Čegan R., Kono T.J.Y., Konečná E., Belanto J.J., Starker C.G., Mathre J.W., Greenstein R.L., Voytas D.F. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell. 2017;29(6):1196-217. DOI: 10.1105/tpc.16.00922
11. Char S.N., Neelakandan A.K., Nahampun H., Frame B., Main M., Spalding M.H., Becraft P.W., Meyers B.C., Walbot V., Wang K., Yang B. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal. 2017;15(2):257-68. DOI: 10.1111/pbi.12611
12. Chen Q., Han Y., Liu H., Wang X., Sun J., Zhao B., Li W., Tian J., Liang Y., Yan J., Tian F. Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. Plant Cell. 2018a;30(7):1404-23. DOI: 10.1105/tpc.18.00109
13. Chen R., Xu Q., Liu Y., Zhang J., Ren D., Wang G., Liu Y. Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Frontiers in Plant Science. 2018b;9:1180. DOI: 10.3389/fpls.2018.01180
14. Чёрный И.В., Шкварников П.К., Максименко В.П. Сорт яровой пшеницы Новосибирская 67. Российская Федерация; авторское свидетельство № 1801; 1975.
15. Cui X., Balcerzak M., Schernthaner J., Babic V., Datla R., Brauer E.K., Labbé N., Subramaniam R., Ouellet T. An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods. 2019;15(1):1-12. DOI: 10.1186/s13007-019-0500-2
16. Doll N.M., Gilles L.M., Gérentes M.F., Richard C., Just J., Fierlej Y., Borrelli V.M.G., Gendrot G., Ingram G.C., Rogowsky P.M., Widiez T. Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Reports. 2019;38(4):487–501. DOI: 10.1007/s00299-019-02378-1
17. Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. DOI: 10.1126/science.1258096
18. Feng C., Su H., Bai H., Wang R., Liu Y., Guo X., Liu C., Zhang J., Yuan J., Birchler J.A., Han F. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnology Journal. 2018;16(11):1848-1857. DOI: 10.1111/pbi.12920
19. Feng C., Yuan J., Wang R., Liu Y., Birchler J.A., Han F. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System. Journal of Genetics and Genomics. 2016;43(1):37-43. DOI: 10.1016/j.jgg.2015.10.002
20. Feng Z., Mao Y., Xu N., Zhang B., Wei P., Yang D., Wang Z. Multigeneration analysis reveals the inheritance , specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences. 2014;111(12):4632-4637. DOI: 10.1073/pnas.1400822111
21. Gaj T., Gersbach C.A., Barbas C.F. ZFN, TALEN, and CRISPR/Casbased methods for genome engineering. Trends in Biotechnology. 2013;31(7):397-405. DOI: 10.1016/j.tibtech.2013.04.004
22. Gao Q., Xu W.Y., Yan T., Fang X.D., Cao Q., Zhang Z.J., Ding Z.H., Wang Y., Wang X.B. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytologist. 2019;223(4):2120-33. DOI: 10.1111/nph.15889
23. Gasparis S., Kała M., Przyborowski M., Łyznik L.A., Orczyk W., Nadolska-Orczyk A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods. 2018;14:111. DOI: 10.1186/s13007-018-0382-8
24. Gerasimova S., Hertig C., Korotkova A., Otto I., Hiekel S., Kochetov A., Kumlehn J., Khlestkina E. Converting hulled into naked barley through targeted knock-out of the Nud1 gene. In Vitro Cellular & Developmental Biology-Plant. 2018;54(1):101. DOI: 10.1007/s11627-018-9923-0
25. Герасимова С.В., Хлесткина Е.К., Кочетов А.В., Шумный В.К. Система CRISPR/Cas9 для редактирования геномов и особенности ее применения на однодольных растениях. Физиология Растений. 2017;64(2):92-108. DOI: 10.1134/S1021443717010071
26. Gerasimova S.V., Korotkova A.M., Hertig C., Hiekel S., Hoffie R., Budhagatapalli N., Otto I., Hensel G., Shumny V.K., Kochetov A.V., Kumlehn J., Khlestkina E.K. Targeted genome modification in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease. Vavilov Journal of Genetics and Breeding. 2018;22(8):1033-1039. DOI: 10.18699/VJ18.447
27. Gil-Humanes J., Wang Y., Liang Z., Shan Q., Ozuna C.V., SánchezLeón S., Baltes N.J., Starker C., Barro F., Gao C., Voytas D.F. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant Journal. 2017;89(6):12511262. DOI: 10.1111/tpj.13446
28. Hamada H., Liu Y., Nagira Y., Miki R., Taoka N., Imai R. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Scientific Reports. 2018;8:14422. DOI: 10.1038/s41598-018-32714-6
29. Hayta S., Smedley M.A., Demir S.U., Blundell R., Hinchliffe A., Atkinson N., Harwood W.A. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods. 2019;15:121. DOI: 10.1186/s13007-019-0503-z
30. Holme I.B., Wendt T., Gil-Humanes J., Deleuran L.C., Starker C.G., Voytas D.F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Molecular Biology. 2017;95(1–2):111-121. DOI: 10.1007/s11103-017-0640-6
31. Holubová K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Frontiers in Plant Science. 2018;9:1676. DOI: 10.3389/.2018.
32. Howells R.M., Craze M., Bowden S., Wallington E.J. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biology. 2018;18:215. DOI: 10.1186/s12870-0181433-z
33. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology. 2013;31(9):827-832. DOI: 10.1038/nbt.2647
34. Hu J., Li S., Li Z., Li H., Song W., Zhao H., Lai J., Xia L., Li D., Zhang Y. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Molecular Plant Pathology. 2019;20(10):1463-1474. DOI: 10.1111/mpp.12849
35. Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. CRISPR for crop improvement: An update review. Frontiers in Plant Science. 2018;9:985. DOI: 10.3389/fpls.2018.00985
36. Jaqueth J.S., Hou Z., Zheng P., Ren R., Nagel B.A., Cutter G., Niu X., Vollbrecht E., Greene T.W., Kumpatla S.P. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant Journal. 2020;101(1):101-111. DOI: 10.1111/tpj.14521
37. Jinek M., Chylinski K., Fonfara I., Hauer M., Jennifer A. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI: 10.1126/science.1225829
38. Jouanin A., Schaart J.G., Boyd L.A., Cockram J., Leigh F.J., Bates R., Wallington E.J., Visser R.G.F., Smulders M.J.M. Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC plant biology. 2019;19(1):333. DOI: 10.1186/s12870-019-1889-5
39. Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Frontiers in Plant Science. 2017;8:540. DOI: 10.3389/fpls.2017.00540
40. Хлесткина Е.К. Геномное редактирование риса при использовании системы CRISPR/Cas. Биотехнология и селекция растений. 2019;2(1):49-54. DOI: 10.30901/2658-6266-2019-1-49-54
41. Хлесткина Е.К., Шумный В.К. Перспективы использования прорывных технологий в селекции: система CRISPR/Cas9 для редактирования генома растений. Генетика. 2016;52(7):774-787. DOI: 10.1134/S102279541607005X
42. Kim D., Alptekin B., Budak H. CRISPR/Cas9 genome editing in wheat. Functional and Integrative Genomics. 2018;18(1):31-41. DOI: 10.1007/s10142-017-0572-x
43. Короткова A.M., Герасимова С.В., Хлесткина E.K. Текущие достижения в области модификации генов культурных растений с использованием системы CRISPR/ Cas. Вавиловский журнал генетики и селекции. 2019;23(1):29-37. DOI: 10.18699/VJ19.458
44. Короткова А.М., Герасимова С.В., Шумный В.К., Хлесткина Е.К. Гены сельскохозяйственных растений, модифицированные с помощью системы CRISPR/Cas. Вавиловский журнал генетики и селекции. 2017;21(2):250-258. DOI: 10.18699/VJ17.244
45. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.H., Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnology Journal. 2018;16(11):1892-903. DOI: 10.1007/s10142-017-0572-x
46. Kumar R., Mamrutha H.M., Kaur A., Venkatesh K., Sharma D., Singh G.P. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Molecular Biology Reports. 2019;46(2):1845-1853. DOI: 10.1007/s11033-019-04637-6
47. Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology. 2015;16(1):258. DOI: 10.1186/s13059-015-0826-7
48. Lee K., Zhang Y., Kleinstiver B.P., Guo J.A., Aryee M.J., Miller J., Malzahn A., Zarecor S., Lawrence-Dill C.J., Joung J.K., Qi Y., Wang K. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal. 2019;17(2):362-372. DOI: 10.1111/pbi.12982
49. Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R., Gao C. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology. 2018;19:59. DOI: 10.1186/s13059-018-1443-z
50. Li J., Aach J., Norville J.E., Mccormack M., Bush J., Church G.M., Sheen J. Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nature Biotechnology. 2013;31(8):688-691. DOI: 10.1038/nbt.2654.Multiplex
51. Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications. 2017;8(1):1-5. DOI: 10.1038/ncomms14261
52. Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J., Gao C. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols. 2018;13(3):413-430. DOI: 10.1038/nprot.2017.145
53. Liang Z., Zhang K., Chen K., Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics. 2014;41(2):63-68. DOI: 10.1016/j.jgg.2013.12.001
54. Malzahn A.A., Tang X., Lee K., Ren Q., Sretenovic S., Zhang Y., Chen H., Kang M., Bao Y., Zheng X., Deng K., Zhang T., Salcedo V., Wang K., Zhang Y., Qi Y. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology. 2019;17:9. DOI: 10.1186/s12915-019-0629-5
55. Nekrasov V., Staskawicz B., Weigel D., Jones J.D.G., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology. 2013;31(8):691-693. DOI: 10.1038/nbt.2655
56. Okada A., Arndell T., Borisjuk N., Sharma N., Watson-Haigh N.S., Tucker E.J., Baumann U., Langridge P., Whitford R. CRISPR/ Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal. 2019;17(10):1905-1913. DOI: 10.1111/pbi.13106
57. Peng R., Lin G., Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS Journal. 2016;283(7):1218-1231. DOI: 10.1111/febs.13586
58. Qi W., Zhu T., Tian Z., Li C., Zhang W., Song R. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnology. 2016;16:58. DOI: 10.1186/s12896-016-0289-2
59. Qi X., Dong L., Liu C., Mao L., Liu F., Zhang X., Cheng B., Xie C. Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop Journal. 2018;6(3):314-320. DOI: 10.1016/j.cj.2018.02.005
60. Rey M.D., Martín A.C., Smedley M., Hayta S., Harwood W., Shaw P., Moore G. Magnesiumincreases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Frontiers in Plant Science. 2018;9:509. DOI: 10.3389/fpls.2018.00509
61. Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Management Science. 2014;70(9):1367-1377. DOI: 10.1002/ps.3743
62. Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal. 2018;16(4):902-910. DOI: 10.1111/pbi.12837
63. Sapone A., Lammers K.M., Casolaro V., Cammarota M., Giuliano M.T., De Rosa M., Stefanile R., Mazzarella G., Tolone C., Russo M.I., Esposito P., Ferraraccio F., Cartenì M., Riegler G., de Magistris L., Fasano A. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: Celiac disease and gluten sensitivity. BMC Medicine. 2011;9:23. DOI: 10.1186/1741-7015-9-23
64. Shan Q., Wang Y., Li J. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. 2013;31(8):686-688. DOI: 10.1038/nbt.2650
65. Shan Q., Wang Y., Li J., Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols. 2014;9(10):2395-2410. DOI: 10.1038/nprot.2014.157
66. Shi J., Gao H., Wang H., Lafitte H.R., Archibald R.L., Yang M., Hakimi S.M., Mo H., Habben J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal. 2017;15(2):207-216. DOI: 10.1111/pbi.12603
67. Singh M., Kumar M., Albertsen M.C., Young J.K., Cigan A.M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Molecular Biology. 2018;97(4–5):371-383. DOI: 10.1007/s11103-018-0749-2
68. Singh R.P., Singh P.K., Rutkoski J., Hodson D.P., He X., Jørgensen L.N., Hovmøller M.S., Huerta-Espino J. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control. Annual Review of Phytopathology. 2016;54(1):303-322. DOI: 10.1146/annurev-phyto-080615-095835
69. Svitashev S., Schwartz C., Lenderts B., Young J.K., Cigan A.M. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications. 2016;7(1):1-7. DOI: 10.1038/ncomms13274
70. Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology. 2015;169(2):931-945. DOI: 10.1104/pp.15.00793
71. Upadhyay S.K., Kumar J., Alok A., Tuli R. RNA-Guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics, Genet. 2013;3(12):2233-2238. DOI: 10.1534/g3.113.008847
72. Wang B., Zhu L., Zhao B., Zhao Y., Xie Y., Zheng Z., Li Y., Sun J., Wang H. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Molecular Plant. 2019a;12(4):597-602. DOI: 10.1016/j.molp.2019.03.006
73. Wang H., Yan S., Xin H., Huang W., Zhang H., Teng S., Yu Y.C., Fernie A.R., Lu X., Li P., Li S., Zhang C., Ruan Y.L., Chen L.Q., Lang Z. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. Plant Cell. 2019b;31(6):1328-1343. DOI: 10.1105/tpc.18.00736
74. Wang W., Pan Q., Tian B., He F., Chen Y., Bai G., Akhunova A., Trick H.N., Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant Journal. 2019c;100(2):251-264. DOI: 10.1111/tpj.14440
75. Wang W., Simmonds J., Pan Q., Davidson D., He F., Battal A., Akhunova A., Trick H.N., Uauy C., Akhunov E. Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theoretical and Applied Genetics. 2018;131(11):2463-2475. DOI: 10.1007/s00122-018-3166-7
76. Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology. 2014;32(9):947-951. DOI: 10.1038/nbt.2969
77. Wolter F., Edelmann S., Kadri A., Scholten S. Characterization of paired Cas9 nickases induced mutations in maize mesophyll protoplasts. Maydica. 2017;62(2):1-11.
78. Wu G., Zhao Y., Shen R., Wang B., Xie Y., Ma X., Zheng Z., Wang H. Characterization of Maize Phytochrome-Interacting Factors in Light Signaling and Photomorphogenesis. Plant physiology. 2019;181(2):789-803. DOI: 10.1104/pp.19.00239
79. Xie K., Wu S., Li Z., Zhou Y., Zhang D., Dong Z., An X., Zhu T., Zhang S., Liu S., Li J., Wan X. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theoretical and Applied Genetics. 2018;131(6):1363-78. DOI: 10.1007/s00122-018-3083-9
80. Xing H.-L., Dong L., Wang Z.-P., Zhang H.-Y., Han C.-Y., Liu B., Wang X.-C., Chen Q.-J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology. 2014;14(1):327. DOI: 10.1186/s12870-014-0327-y
81. Young J., Zastrow-Hayes G., Deschamps S., Svitashev S., Zaremba M., Acharya A., Paulraj S., Peterson-Burch B., Schwartz C., Djukanovic V., Lenderts B., Feigenbutz L., Wang L., Alarcon C., Siksnys V., May G., Chilcoat N.D., Kumar S. CRISPR-Cas9 Editing in Maize: Systematic Evaluation of Off-target Activity and Its Relevance in Crop Improvement. Scientific Reports. 2019;9(1):1-11. DOI: 10.1038/s41598-019-43141-6
82. Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N., Zhu J.K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal. 2014;12(6):797-807. DOI: 10.1111/pbi.12200
83. Zhang Q., Zhang Y., Lu M.H., Chai Y.P., Jiang Y.Y., Zhou Y., Wang X.C., Chen Q.J. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiology. 2019a;181(4):1441-1448. DOI: 10.1104/pp.19.00767
84. Zhang S., Zhang R., Gao J., Gu T., Song G. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium tumefaciens-Mediated CRISPR/Cas9 System. International Journal of Molecular Sciences Article. 2019b;20(17):4257. DOI: 10.3390/ijms20174257
85. Zhang S., Zhang R., Song G., Gao J., Li W., Han X., Chen M., Li Y., Li G. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biology. 2018;18(1):1-12. DOI: 10.1186/s12870-018-1496-x
86. Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal. 2017;91(4):714-724. DOI: 10.1111/tpj.13599
87. Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications. 2016;7:1-8. DOI: 10.1038/ncomms12617
88. Zhang Z., Guo J., Zhao Y., Chen J. Identification and characterization of maize ACD6-like gene reveal ZmACD6 as the maize orthologue conferring resistance to Ustilago maydis. Plant Signaling and Behavior. 2019c;14(10):e1651604. DOI: 10.1080/15592324.2019.1651604
89. Zhang Z., Hua L., Gupta A., Tricoli D., Edwards K.J., Yang B., Li W. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal. 2019d;17(8):1623-1635. DOI: 10.1111/pbi.13088
90. Zhong Y., Blennow A., Kofoed-Enevoldsen O., Jiang D., Hebelstrup K.H. Protein Targeting to Starch 1 is essential for starchy endosperm development in barley. Journal of Experimental Botany. 2019;70(2):485-496. DOI: 10.1093/jxb/ery398
91. Zhou H., Liu B., Weeks D.P., Spalding M.H., Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research. 2014;42(17):10903-10914. DOI: 10.1093/nar/gku806
92. Zhu J., Song N., Sun S., Yang W., Zhao H., Song W., Lai J. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9. Journal of Genetics and Genomics. 2016;43(1):25-36. DOI: 10.1016/j.jgg.2015.10.006
93. Zong Y., Wang Y., Li C., Zhang R., Chen K., Ran Y., Qiu J.L., Wang D., Gao C. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology. 2017;35(5):438-440. DOI: 10.1038/nbt.3811
94. Zuo Y., Feng F., Qi W., Song R. Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. Journal of Integrative Plant Biology. 2019;61(6):728-748. DOI: 10.1111/jipb.12798
Рецензия
Для цитирования:
Стрыгина К.В., Хлесткина Е.К. Редактирование генов пшеницы, ячменя и кукурузы с использованием системы CRISPR/Cas. Биотехнология и селекция растений. 2020;3(1):46-56. https://doi.org/10.30901/2658-6266-2020-1-o2
For citation:
Strygina K.V., Khlestkina E.K. Wheat, barley and maize genes editing using the CRISPR/Cas system. Plant Biotechnology and Breeding. 2020;3(1):46-56. (In Russ.) https://doi.org/10.30901/2658-6266-2020-1-o2