Preview

Plant Biotechnology and Breeding

Advanced search

In vitro regeneration of grape

https://doi.org/10.30901/2658-6266-2022-4-o1

Abstract

Considering the global and Russian experience in grape accessions preservation, one of the most reliable ways is the creation of a duplicate in vitro collection. However, in connection with the creation of duplicate grape collections and development of genome editing techniques, there is a need for selecting the most optimal medium composition that will ensure the maximum rate of callus formation and regeneration during the introduction of grape plants into in vitro culture. This will make it possible to obtain the necessary amount of material for further editing and subsequent regeneration of plants with knockout of target genes to improve economically valuable traits. For grapes, this is primarily an increase in resistance to powdery mildew caused by Uncinula necator Burill. The effect of active substances of biological and synthetic origin on the morphogenesis has been studied for many crops, including regenerant plants of the genus Vitis L. However, the genus Vitis is very diverse and heterogeneous in its genetic, physiological and morphological structure, as a result of which the recommended media and components for cultivation under in vitro conditions may not suit every cultivar. Local Russian grape cultivars are better suited to local growing conditions, so efforts should be focused on the development of techniques related to the preservation of local varieties in collections in vitro. Knowledge of genes controlling certain traits, as well as the availability of grape accessions whose genome has been sequenced, contribute to successful in silico analysis for creating editing constructs.

About the Authors

T. V. Kovalenko
Sirius University of Science and Technology; N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Tatyana V. Kovalenko

Master's student of "Genetics and Genetic Technologies", Sirius University of Science and Technology; Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR,

1, Olimpiyskiy avenue, Sochi, 354340 Russia; 42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia 



N. G. Tikhonova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Nadezhda G. Tikhonova

Cand. Sci. (Biol.), Senior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



E. K. Khlestkina
https://www.vir.nw.ru/en/directorate/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elena K. Khlestkina

Dr. Sci. (Biol.), Professor of the RAS, Director, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



Yu. V. Ukhatova
https://www.vir.nw.ru/en/directorate/#1545744849316-fdeb2d71-508f
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Yulia V. Ukhatova

Cand. Sci. (Biol.), Deputy Director for Scientific and Organizational Work, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



References

1. Agakhanov M.M. Genetic diversity and breeding value of accessions from the VIR ampelography collection [dissertation]. St. Petersburg: VIR; 2022.

2. Alleweldt G., Harst-Langenbucher M. Der einflus von in vitro wachtuxnisinhibitoren auf die zangzeit-lagerund von in vitro kulturen der rebe. Vitis. 1987;26(2):57-64. [In German]. DOI: 10.5073/vitis.1987.26.57-64

3. Amato F.D. The problem of genetic stability in plant tissue and cell cultures. In: O.N. Franfel, I.G. Hawkes (eds.). Crop genetic resources for today and tomorrow. Cambridge University Press; 1975.

4. Andersson M., Turesson H., Olsson N., Fält A.-S., Ohlsson P., Gonzalez M.N., Samuelsson M., Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiologia Plantarum. 2018;164(4):378-384. DOI: 10.1111/ppl.12731

5. Barceló M., Wallin A., Medina J.J., Gil-Ariza D.J., López-Casado G., Juarez J., Sánchez-Sevilla J.F., López-Encina C., López-Aranda J.M., Mercado J.A., Pliego-Alfaro F. Isolation and Culture of Strawberry Protoplasts and Field Evaluation of Regenerated Plants. Scientia Horticulturae. 2019;256:108-552. DOI: 10.1016/j.scienta.2019.108552

6. Barlass M., Skene K.G.M. Studies on the fragmented shoot apex of grapevine: I. The regenerative capacity of leaf primordial fragments in vitro. Journal of Experimental Botany. 1980;31:483-488. DOI: 10.1093/jxb/31.2.483

7. Barlass K.G.V., Skene K.G.M. Clonal propagation through tissue culture. Australian Grape Grower and Winemaker. 1979;16:12-13.

8. Benson E.E., Danaher J.E., Pimbley I.M., Anderson C.T., Wake J.E., Daley S., Adams L.K. In vitro micropropagation of Primula scotica: a rare Scottish plant. Biodiversity and Conservation. 2000;9:711-726. DOI: 10.1023/A:1008941726419

9. Bidabadi S.S, Jain S.M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants. 2020;9(6):702. DOI: 10.3390/plants9060702

10. Blaich R. Recherches sur les cultures de meristemes et d'organes de vigne in vitro en vue de la selection et de la conservation de genotypes. Bulletin de lO.I.V. 1985;58(650/651):391-395. [In French]

11. Boutilier K., Offringa R., Sharma V.K., Kieft H., Ouellet T., Zhang L., Hattori J., Liu C.M., van Lammeren A.A.M., Miki B.L.A., Custers J.B.M., van Lookeren Campagne M.M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14:1737-1749. DOI: 10.1105/tpc.001941

12. Bower D.J. Genetic resources worldwide. Trends in Biotechnology. 1989;7(5):111-116. DOI: 10.1016/0167-7799(89)90084-X

13. Butenko R.G. Biology of cells of higher plants in vitro and biotechnology on their basis. Мoscow; 1999.

14. Chen Z., Hsiao K.-C., Bornman C.H. Ploidy and division efficiency of petiolar protoplasts of Brassica napus. Hereditas. 1994;120:41-46. DOI: 10.1111/j.1601-5223.1994.00041.x

15. Chen L., Tong J., Xiao L., Ruan Y., Liu J., Zeng M., Huang H., Wang J.W., Xu L. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany. 2016;67:4273-4284. DOI: 10.1093/jxb/erw213

16. Craig W., Gargano D., Scotti N., Nguyen T.T., Lao N.T., Kavanagh T.A., Dix T.A., Cardi T. Direct gene transfer in potato: a comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts. Plant Cell Reports. 2005;24:603-611. DOI: 10.1007/s00299-005-0018-0

17. Dodueva I.E., Tvorogova V.E., Azarakhsh M., Lebedeva M.A., Lutova L.A. Plant stem cells: unity and diversity. Vavilov Journal of Genetics and Breeding. 2016;20(4):441-458. DOI: 10.18699/VJ16.172

18. Egorov E.A., Ilyashenko O.M., Kovalenko A.G., Nosulchak V.A., Nud’ga T.A., Pankin M.I., Petrov V.S., Serpukhovitina K.A., Sundyreva M.A., Talash A.I., Troshin L.P. Anapa Ampelographic collection (Anapskaya Ampelograficheskaya kollektsiya). Krasnodar: NCRRIH & V Rosselkhozacademii; 2009.

19. Elmaghrabi A., Ochatt S. Isoenzymes and flow cytometry for the assessment of true-to-typeness of calluses and cell suspensions of barrel medic prior to regeneration. Plant Cell, Tissue Organ Culture. 2022;85:31-43. DOI: 10.1007/s11240-005-9046-2

20. Forsline P.L. Progress in developing a national program for Malus and Vitis germplasm maintenance and evaluation in the USA. Acta Horticulturae. 1988;224:33-38. DOI: 10.17660/ActaHortic.1988.224.2

21. Galzy R. Les possibilities de conservation in vitro d’ une collection de clones de vignes. Bulletin de lO.I.V. 1985;650-651:377-390. [In French].

22. Gancheva M.S., Malovichko Y.V., Polushkevich L.O., Dodueva I.E., Lutova L.A., Plant peptide hormones. Russian Journal of Plant Physiology. 2019;66(2):171-189. DOI: 10.1134/S1021443719010072

23. Gavrilenko T.A., Dunaeva S.E., Truskinov E.V., Antonova O.Y., Pendinen G.I., Lupysheva J.V., Rogovaya V.V., Shvachko N.A. Strategy for long-term conservation of the gene pool of vegetatively propagated agricultural plants under controlled environmental conditions. Proceedings on Applied Botany, Genetics and Breeding. 2007;164:273-285.

24. FAO, 2014. Genebank Standards for Plant Genetic Resources for Food and Agriculture. Rev. ed. Rome: FAO; 2014.

25. Gamburg K.Z., Yurieva O.V., Kazanovsky S.G. The application of clonal micropropagation for conservation of rare, endemic and endangered plant spesies. In: The IX International Conference «The Biology of plant cells in vitro and biotechnology»: Abstract; 2008 September 8-12; Zvenigorod, Russia. Moscow; 2008. p.87. URL: https://ippras.ru/upload/files/Abstracts.pdf [дата обращения: 27.11.2022].

26. George E.F., Hall M.A., De Klerk G.-J. (eds). Plant propagation by tissue culture. Vol. 1. The Background. Springer Dordrecht; 2008. 502 p. DOI: 10.1007/978-1-4020-5005-3

27. Golodriga P.Ya., Zlenko V.A., Chekmarev L.A., Butenko R.G., Levenko B.A., Peelin N.M. Guidelines for clonal micropropagation of grapes (Metodicheskiye rekomendatsii po klonalnomu mikrorazmnozheniyu vinograda). Yalta: Magarach; 1986. 56 p.

28. Grimplet J., Pimentel D., Agudelo-Romero P., Martinez-Zapater J.M., Fortes A.M. The LATERAL ORGAN BOUNDARIES Domain gene family in grapevine: genome-wide characterization and expression analyses during developmental processes and stress responses. Scientific Reports. 2017;7(1):15968. DOI: 10.1038/s41598-017-16240-5

29. Harding E.W., Tang W., Nichols K.W., Fernandez D.E., Perry S.E. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiology. 2003;133:653-663. DOI: 10.1104/pp.103.023499

30. Harst-Langenbucher M. Long term storage of in vitro cultures of grapevines. Die Langzeit-lagerung von in vitro Kulturen der Rebe [dissertation]. 1982.

31. Hecht V., Vielle-Calzada J.P., Hartog M.V., Schmidt E.D., Boutilier K., Grossniklaus U., de Vries S.C. The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology. 2001;127:803-816. DOI: 10.1104/pp.010324

32. Heywood V.H., Iriondo J.M. Plant conservation: old problems, new perspectives. Biological Conservation. 2003;113:321-335. DOI: 10.1016/S0006-3207(03)00121-6

33. Iacob M. Deloire A. Caspar Th. Conservation au froid de la vigne en culture in vitro. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 1989;54(2A):455-468. [In French]

34. Ikeuchi M., Iwase A., Rymen B., Lambolez A., Kojima M., Takebayashi Y., Heyman J., Watanabe S., Seo M., De Veylder L., Sakakibara H., Sugimoto K. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology. 2017;175:1158-1174. DOI: 10.1104/pp.17.01035

35. Ilnitskay E.T., Makarkina M.V. Application of DNA-markers in molecular breeding and genetic studies of grapevine. Vavilov Journal of Genetics and Breeding. 2016;20(4):528-536. DOI: 10.18699/VJ16.163

36. Iocco P., Franks T., Thomas M.R. Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Research. 2001;10:105-112. DOI: 10.1023/A:1008989610340

37. Iwase A., Mitsuda N., Koyama T., Hiratsu K., Kojima M., Arai T., Inoue Y., Seki M., Sakakibara H., Sugimoto K., Ohme-Takagi M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology. 2011;21(6):508-514. DOI: 10.1016/j.cub.2011.02.020

38. Jarvis D.I., Mayer L.Y., Klemik H., Guarino L., Smale M., Brown A.H.D., Sadiki M., Sthapit B., Hodgkin T. A training guide for in situ conservation on farm. Version 1. Rome: IPGRI; 2000.

39. Kashin V.I., Borisova A.A., Prihod'ko YU.N., Surkova O.YU., Upadyshev M.T., Metlickaya K.V., Lapinskaya M.P., Tsubera L.V., Litvinenko I.S., Veretennikova N.P. Technological process of obtaining virus-free planting material of fruit and berry crops: Methodological guide (Tekhnologicheskiy process polucheniya bezvirusnogo posadochnogo materiala plodovykh i yagodnykh kultur: Metodicheskie ukazaniya). Moscow; 2001.

40. Kershengol’ts B.M., Remigailo P.A., Khlebnyi E.S. A Seedbank in the Permafrost. SCIENCE First Hand. 2012;33(3). Available from: https://scfh.ru/en/papers/a-seedbank-in-the-permafrost/ [accessed Nov. 15, 2022]. URL: https://scfh.ru/papers/bank-semyan-v-vechnoy-merzlote [дата обращения: 15.11.2022].

41. Kiełkowska A., Adamus A. Peptide growth factor phytosulfokine-α stimulates cell divisions and enhances regeneration from B. oleracea var. capitata L. protoplast culture. Journal of Plant Growth Regulation. 2019;38:931-944. DOI: 10.1007/s00344-018-9903-y

42. Lardon R., Geelen D. Natural variation in plant pluripotency and regeneration. Plants. 2020;24(10):1261. DOI: 10.3390/plants9101261

43. Lardon R, Wijnker E, Keurentjes J, Geelen D. The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Communications Biology. 2020;3(1):549. DOI: 10.1038/s42003-020-01274-9

44. Lassoued R., Phillips P.W.B., Macall D.M., Hesseln H., Smyth S.J. Expert opinions on the regulation of plant genome editing. Plant Biotechnology Journal. 2021;19(6):1104-1109. DOI: 10.1111/pbi.13597

45. Leng X., Wei H., Xu X., Ghuge S.A., Jia D., Liu G., Wang Y., Yuan Y. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. BMC Genomics. 2019;20(1):786. DOI: 10.1186/s12864-019-6159-2

46. Licausi F., Giorgi F.M., Zenoni S., Osti F., Pezzotti M., Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics. 2010;11:719. DOI: 10.1186/1471-2164-11-719

47. Liu J., Sheng L., Xu Y., Li J., Yang Z., Huang H., Xu L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell. 2014;26:1081-1093. DOI: 10.1105/tpc.114.122887

48. Lotan T., Ohto M., Yee K.M., West M.A., Lo R., Kwong R.W., Yamagishi K., Fischer R.L., Goldberg R.B., Harada J.J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell. 1998;93:1195-1205. DOI: 10.1016/S0092-8674(00)81463-4

49. Lukaszewska E., Virden R., Sliwinska E. Hormonal control of endoreduplication in sugar beet (Beta vulgaris L.) seedlings growing in vitro. Plant Biology. 2012;14:216-222. DOI: 10.1111/j.1438-8677.2011.00477.x

50. Lup S.D., Tian X., Xu J., Perez-Perez J.M. Wound signaling of regenerative cell reprogramming. Plant Science. 2016;250:178-187. DOI: 10.1016/j.plantsci.2016.06.012.

51. Magnien E., Dalschaert X., Faraoni-Sciamanna P. Transmission of a cytological heterogeneity from the leaf to the protoplasts in culture. Plant Science Letters. 1982;25:291-303. DOI: 10.1016/0304-4211(82)90159-6

52. Marchenko А.О. Model of processes of reproduction of plants. In: The IX International Conference «The Biology of plant cells in vitro and biotechnology»: Abstract; 2008 September 8-12; Zvenigorod, Russia. Moscow; 2008. p.243. URL: https://ippras.ru/upload/files/Abstracts.pdf [дата обращения: 27.11.2022]).

53. Marchenko A.O., Golodriga P.L., Klimenko Z.P., Piven K.M. Somatic embryoidogenesis in grape tissue culture. Physiology and biochemistry of cultivated plants. 1987;19(4):408-411.

54. Masani M.Y.A., Noll G., Parveez G.K.A., Sambanthamurthi R., Prüfer D. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures. Plant Science. 2013;210:118-127. DOI: 10.1016/j.plantsci.2013.05.021

55. Mashkina O.S., Tabatskaya T.M., Morkovina S.S., Panyavina E.A. Growing seedlings white poplar (Populus alba L.) based on the collection in vitro and evaluation of its cost. Forestry Magazine. 2016;6(1):28-44. DOI: 10.12737/18725

56. Medvedeva N.I., Polivara N.V., Troshin L.P. Peculiarities of microclonal propagation of introducers and grape clones. Polythematic Online Scientific Journal of Kuban State Agrarian University. 2008;(40):137-155.

57. Mezzetti B., Pandolfini T., Navacchi O., Landi L. Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnology. 2002;2:18. DOI: 10.1186/1472-6750-2-18

58. Molkanova O.I., Konovalova T.Y., Meleschuk E.V., Orlova N.D., Koroleva O.V., Akmetova L.R., Shirnina I.V. Creation of in vitro gene bank of rare and valuable species and cultivars of MBG RAS. In: Botanical gardens in the XXI century: biodiversity conservation, development strategy and innovative solutions: collection of scientific materials of the II All-Russian scientific and practical conference with international participation, dedicated to the 20th anniversary of the Botanical Garden «BelSU». Belgorod; 2019. p.178-181. URL: https://botanicgarden.bsu.edu.ru/media/uploads/2020/02/botanicheskie-sady_19.pdf [дата обращения: 27.11.2022].

59. Mozgova I., Munoz-Viana R., Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genetics. 2017;13(1):e1006562. DOI: 10.1371/journal.pgen.1006562

60. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology. 1962;15(3):473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x

61. Naegele RP, Londo JP, Zou C, Cousins P. Identification of SNPs associated with magnesium and sodium uptake and the effect of their accumulation on micro and macro nutrient levels in Vitis vinifera. PeerJ. 2021;9:e10773. DOI: 10.7717/peerj.10773

62. Negrul A.M. Origin and classification of cultured grapevine. In: A.M. Frolov-Bagreyev (ed.) The ampelography of the USSR. Vol. 1. Moscow: Pischepromizdat; 1946. p.159-216.

63. Nosulchak V.A., Smurygin A.S., Troshin L.P. Collection, conservation and analysis of the gene pool of Russian grapes. Proceedings on Applied Botany, Genetics and Breeding. 2007;161:20-29.

64. Ochatt S.J., Mousset-Déclas C., Rancillac M. Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Science. 2000;156(2):177-183. DOI: 10.1016/s0168-9452(00)00250-8

65. Orlikowska T. Effect of in vitro storage at 4ºC on survival and proliferation of apple rootstocks. Acta Horticulturae. 1991;289:251-254. DOI: 10.17660/ActaHortic.1991.289.66

66. Klimenko V.P., Pavlova I.A. Collection of grapevine varieties, hybrids and clones under in vitro conditions. In: Prospects for the Development of Viticulture and Winemaking in CIS Countries: Abstracts of reports and messages of the International scientific-practical conference dedicated to the 180th anniversary of the NIV&W "Magarach"; 2008 October 28-30; Yalta, Crimea; Yalta; 2008. Vol. 1. p.80-81.

67. Pavlova I.A., Klimenko V.P. Creation and prospects of use of grape varieties and hybrids collection in vitro. In: Actual problems of applied genetics, breeding and biotchnology of plants: Abstracts of the International Scientific Conference dedicated to the 200th anniversary of Charles Darwin and the 200th anniversary of the Nikitsky Botanical Garden; 2009 November 03-06; Yalta, Crimea. Yalta; 2009. p.149.

68. Plekhanova M.N. Collections of genetic resources of fruit and berry crops: structure and problems of conservation in living form. In: Proceedings of the XXI Michurin readings; 2002 October 28-30; Michurinsk, Russia. Michurinsk; 2002. p.4.

69. Prange A.N.S., Bartsch M., Serek M., Winkelmann T. Regeneration of different Cyclamen species via somatic embryogenesis from callus, suspension cultures and protoplasts. Scientia Horticulturae. 2010;125(3):442-450. DOI: 10.1016/j.scienta.2010.04.018

70. Rai M.K., Shekhawat N.S. Recent advances in genetic engineering for improvement of fruit crops. Plant Cell, Tissue and Organ Culture. 2014;116:1-15. DOI: 10.1007/s11240-013-0389-9

71. Rajasekaran K., Mullins M.G. Organogenesis in internode explants of grapevines. Vitis. 1981;20(3):218-227. DOI: 10.5073/vitis.1981.20.218-227

72. Reed B.M., Chang Y. Medium- and long- term storage of in vitro cultures of temperate fruit and nut crops. In: M.K. Razdan, E.C. Cocking (eds). Conservation of Plant Genetic Resources In Vitro. Vol. 1: General Aspects. U.S.A.: Science Publishers, Inc.; 1997. p.67-105.

73. Reed K.M., Bargmann B.O.R. Protoplast regeneration and its use in new plant breeding technologies. Frontiers in Genome Editing. 2021;3(3):734951. DOI: 10.3389/fgeed.2021.734951

74. Ren C., Guo Y., Kong J., Lecourieux F., Dai Z., Li S., Liang Z. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biology. 2020;20(1):47. DOI: 10.1186/s12870-020-2263-3

75. Revin P. Speech at XVI International Botanical Congress. Information Bulletin. Council of Botanical Gardens of Russia and Branch of International Plant Protection Council. 2000;11:38-47.

76. Rymen B., Kawamura A., Lambolez A., Inagaki S., Takebayashi A., Iwase A., Sakamoto Y., Sko K., Favero D.S., Ikeuchi M., Suzuki T., Seki M., Kakatani T., Roudier F., Sugimoto K. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Communications Biology. 2019;2:404. DOI: 10.1038/s42003-019-0646-5

77. Sala F., Magnien E., Galli M.G., Dalschaert X., Redrali-Noy G., Spadari S. DNA repair synthesis in plant protoplasts is aphidicolin-resistant. FEBBS Letters. 1982;138(2):213-217. DOI: 10.1016/0014-5793(82)80444-4

78. Saporta R., Pedro-Galan S., Domenech G., Carmen M. Attempts at grapevine (Vitis vinifera L.) breeding through genetic transformation: the main limiting factors. Vitis. 2016;55:173-186. DOI: 10.5073/vitis.2016.55.173-186

79. Sauer N.J., Narváez-Vásquez J., Mozoruk J., Miller R.B., Warburg Z.J., Woodward M.J., Mihiret Y.A., Lincoln T.A., Segami R.E., Sanders S.L., Walker K.A., Beetham P.R., Schöpke C.R., Gocal G.F.W. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology. 2016;170(4):1917-1928. DOI: 10.1104/pp.15.01696

80. Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. 2013;31:686-688. DOI: 10.1038/nbt.2650

81. Sheng X., Zhao Z., Yu H., Wang J., Xiaohui Z., Gu H. Protoplast Isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Plant Cell, Tissue and Organ Culture. 2021;107:513-520. DOI: 10.1007/s11240-011-0002-z

82. Shi Z, Halaly-Basha T, Zheng C, Sharabi-Schwager M, Wang C, Galbraith DW, Ophir R, Pang X, Or E. Identification of potential post-ethylene events in the signaling cascade induced by stimuli of bud dormancy release in grapevine. Plant Journal. 2020;104(5):1251-1268. DOI: 10.1111/tpj.14997

83. Stamp J.A., Colby S.M., Meredith C.P. Direct shoot organogenesis and plant regeneration from leaves of grape (Vitis spp.). Plant Cell, Tissue and Organ Culture. 1990;22:127-133. DOI: 10.1007/BF00043688

84. Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B., Harada J.J. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences. 2001;98(20):11806-11811. DOI: 10.1073/pnas.201413498

85. Thakare D., Tang W., Hill K., Perry S.E. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiology. 2008;146:1663-1672. DOI: 10.1104/pp.108.115832

86. Tomiczak K., Mikuła A., Sliwinska E., Rybczyński J.J. Autotetraploid plant regeneration by indirect somatic embryogenesis from leaf mesophyll protoplasts of diploid Gentiana Decumbens L.f. In Vitro Cellular and Developmental Biology - Plant. 2015;51:350-359. DOI: 10.1007/s11627-015-9674-0

87. Tsuwamoto R., Yokoi S., Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Molecular Biology. 2010;73:481-492. DOI: 10.1007/s11103-010-9634-3

88. Tu M., Fang J., Zhao R., Liu X., Yin W., Wang Y., Wang X., Wang X., Fang Y. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Horticulture Research. 2022;19:20-22. DOI: 10.1093/hr/uhac022

89. Tvorogova V.E. WOX and PIN genes in the regulation of somatic embryogenesis in Medicago truncatula [dissertation]. St. Petersburg: VIR; 2016.

90. Ukhatova Y.V., Gavrilenko T.A. Cryoconservation methods for vegetatively propagated crops. Plant Biotechnology and Breeding. 2018;1(1):52-63. DOI: 10.30901/2658-6266-2018-1-52-63

91. Vechyorco N.A., Romadanova N.V., Jumabekov E.V. Preservation of biodiversity of apple – tree through tissue culture. In: The IX International Conference «The Biology of plant cells in vitro and biotechnology»: Abstract; 2008 September 8-12; Zvenigorod, Russia. Moscow; 2008. p.71.

92. Vetchinkina E.M., Malaeva E.V., Mamaeva N.A., Zinina J.M., Konovalova L.N., Korotkov O.I., Molkanova O.I. Application of biotechnological methods for conservation of rare and valuable species plants. In: The IX International Conference «The Biology of plant cells in vitro and biotechnology»: Abstract; 2008 September 8-12; Zvenigorod, Russia. Moscow; 2008. p.67.

93. Vetchinkina E.M., Molkanova O.I. Using of embryo culture for in vitro plant gene banks creation. In: The IX International Conference «The Biology of plant cells in vitro and biotechnology»: Abstract; 2008 September 8-12; Zvenigorod, Russia. Moscow; 2008. p.69.

94. Vysotskaya O.N. Long-term preservation in vitro collection of strawberry plants (Dlitelnoye sokhraneniye in vitro kollektsii rasteniy zemlyaniki). Plant Physiology. 1994;41(6):935-941.

95. Vysotsky V.A., Vysotskaya O.N. In vitro culture for long-term storage of valuable genotypes (Kultura in vitro dlya dlitelnogo khraneniya tsennykh genotipov). In: Proceedings of the XXI Michurin readings; 2002 October 28-30; Michurinsk, Russia. Michurinsk; 2002. p.12-13.

96. Wang C., He R., Lu J., Zhang Y. Selection and regeneration of Vitis vinifera Chardonnay hydroxyproline-resistant calli. Protoplasma. 2018;255(5):1413-1422. DOI: 10.1007/s00709-018-1240-2

97. Woo J.W., Kim J., Kwon S.I., Corvalán C., Cho S.W., Kim H., Kim S.-G., Kim S.-T., Choe S., Kim J.-S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Natural Biotechnology. 2016;33:1162-1164. DOI: 10.1038/nbt.3389

98. Xiao J., Wagner D. Polycomb repression in the regulation of growth and development in Arabidopsis. Current Opinion in Plant Biology. 2015;23:15-24. DOI: 10.1016/j.pbi.2014.10.003

99. Xu L., Huang H. Genetic and epigenetic controls of plant regeneration. Chapter One. In: B. Galliot (ed.) Current Topics in Developmental Biology. Vol. 108. Mechanisms of Regeneration. Cambridge, Massachusetts: Academic Press; 2014. p.1-33. DOI: 10.1016/B978-0-12-391498-9.00009-7

100. Yeremin G.V., Tsarenko V.P., Plekhanova M.N. In gardens and nurseries of USA. Gardening and Viticulture. 1991;1:42-44.

101. Zelenyanskaya N.N., Jaburiya L.V., Tesliuk N.I., Podust N.V., Gogulinskaya E.I., Methods of grape collection material in vitro storage. Odesa: National Scientific Centre «V.E. Tairov Institute of Viticulture and Winemaking»; 2016.

102. Zhang Y., Malzahn A.A., Sretenovic S., Qi Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants. 2019;5:778-794. DOI: 10.1038/s41477-019-0461-5

103. Zhuchenko A.A. Adaptive potential of cultivated plants. Chisinau: Știința; 1988: p.238-253.


Review

For citations:


Kovalenko T.V., Tikhonova N.G., Khlestkina E.K., Ukhatova Yu.V. In vitro regeneration of grape. Plant Biotechnology and Breeding. 2022;5(4):39-54. (In Russ.) https://doi.org/10.30901/2658-6266-2022-4-o1

Views: 503


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)