Preview

Plant Biotechnology and Breeding

Advanced search

The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR)

https://doi.org/10.30901/2658-6266-2022-4-o3

Abstract

The use of modern breeding methods, biotechnology, and molecular genetics makes it possible to identify promising accessions with specified economically important traits at early pre-breeding stages. The success of creating new varieties depends on the availability of unique collections of plant genetic resources, information about genomes, possibility of in vitro cultivation with high regenerative capacity, and practical skills and competencies in this area. One of the advanced methods for accelerating the breeding process is genome editing using the CRISPR/Cas system. This method allows the effective modification of genes in order to obtain varieties with desired traits. In 2022, a new youth laboratory of genetics, breeding, biotechnology of ornamental and berry crops was set up at VIR as part of the National Project "Science and Universities". It is noteworthy that this event coincided with the 135th anniversary of the birth of N.I. Vavilov. The work of the laboratory is aimed at obtaining lines with desired properties for the further breeding process; identifying target genes of economically important traits for obtaining new varieties, lines, and hybrids; as well as creating protocols for the accelerated reproduction of virus-free material of commercially demanded varieties oriented towards import substitution. This review discusses current trends in breeding of ornamental and berry crops: e.g., flower color change in snapdragon and peony; flower aroma improvement in rose; architectonics change in actinidia; and increase of resistance to stress factors in blackberries, strawberries, and grapes.

About the Authors

R. S. Rakhmangulov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ruslan S. Rakhmangulov

Cand. Sci. (Biol.), Senior Researcher, Head, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



I. V. Barabanov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ivan V. Barabanov

 Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



M/ V. Erastenkova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Mariya V. Erastenkova

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



A. A. Ivanov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Aleksandr A. Ivanov

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



T. V. Kovalenko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Tatyana V. Kovalenko

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



K. M. Mezhina
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ksenya M. Mezhina

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



I. A. Petrosyan
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Igor A. Petrosyan

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



A. A. Kharchenko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Anastasiia A. Kharchenko

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



D. Yu. Shaimardanov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Damir Yu. Shaimardanov

Junior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



E. Kh. Shaimardanova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elza Kh. Shaimardanova

Cand. Sci. (Biol.), Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



I. N. Anisimova
https://www.vir.nw.ru/vir/podrazdeleniya-instituta/otdely/otdel-genetiki/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Irina N. Anisimova

Dr. Sci. (Biol.), Leading Researcher, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



N. G. Tikhonova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Nadezhda G. Tikhonova

Cand. Sci. (Biol.), Senior Researcher, Laboratory of Genetics, Breeding, Biotechnology of Ornamental and Berry Crops, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



Yu. V. Ukhatova
https://www.vir.nw.ru/direktsiya/#1545032421144-260807b3-8b82
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Yulia V. Ukhatova

Cand. Sci. (Biol.), Deputy Director for Scientific and Organizational Work, VIR 

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



E. K. Khlestkina
https://www.vir.nw.ru/direktsiya/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elena K. Khlestkina

Dr. Sci. (Biol.), Professor of the RAS, Director, VIR

42, 44, Bolshaya Morskaya Str., St. Petersburg, 190000 Russia



References

1. Alvarez J., Guli C.L., Yu X.H., Smyth D.R. terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. The Plant Journal. 1992;2(1):103-116. DOI: 10.1111/j.1365-313X.1992.00103.x

2. Benedict C., Skinner J.S., Meng R., Chang Y., Bhalerao R., Huner N.P.A., Finn C.E., Chen T.H.H., Hurry V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell and Environment. 2006;29(7):1259-1272. DOI: 10.1111/j.1365-3040.2006.01505.x

3. Bradley D., Carpenter R., Copsey L., Vincent C., Rothstein S., Coen E. Control of inflorescence architecture in Antirrhinum. Nature. 1996;379(6568):791-797. DOI: 10.1038/379791a0

4. Bradley D., Ratcliffe O., Vincent C., Carpenter R., Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80-83. DOI: 10.1126/science.275.5296.80

5. Bumbeeva L.I. Roses (Rozy). Moscow: Kladez Buks; 2010.

6. Chinnusamy V, Zhu J, Zhu J.K. Cold stress regulation of gene expression in plants. Trends in Plant Science. 2007;12:444-451. DOI: 10.1016/j.tplants.2007.07.002

7. Cho M.J., Howard L.R., Prior R.L., Clark J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture. 2004;84:1771-1782. DOI: 10.1002/jsfa.1885

8. Coen E.S., Carpenter R., Martin C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell. 1986;47(2):285-296. DOI: 10.1016/0092-8674(86)90451-4

9. Dani K.G.S., Fineschi S., Michelozzi M., Trivellini A., Pollastri S., Loreto F. Diversification of petal monoterpene profiles during floral development and senescence in wild roses: relationships among geraniol content, petal colour, and foral lifespan. Oecologia. 2021;197:957-969. DOI: 10.1007/s00442-020-04710-z

10. Dong C., Zhang Z., Ren J., Qin Y., Huang J., Wang Y., Cai B., Wang B., Tao J. Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco. Plant Physiology and Biochemistry. 2013;71:212-217. DOI: 10.1016/j.plaphy.2013.07.012

11. Esumi T., Tao R., Yonemori K. Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sexual Plant Reproduction. 2005;17(6):277-287. DOI: 10.1007/s00497-004-0239-3

12. Evdokimenko S.N., Kulagina V.L. Evaluation of blackberry varieties and raspberry-blackberry hybrids in conditions of the Bryansk Region. Horticulture and viticulture. 2015;4:20-23.

13. Fan Y., Wang Q., Dong Z., Yin Y., Teixeira da Silva J.A., Yu X. Advances in molecular biology of Paeonia L. Planta. 2020;251:23. DOI: 10.1007/s00425-019-03299-9

14. Fowler S., Thomashow M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002;14:1675-1690. DOI: 10.1105/tpc.003483

15. Gou J.Y., Felippes F.F., Liu C.J., Weigel D., Wang J.W. Negative regulation of anthocyanin biosynthesis in Аrabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23:1512-1522. DOI: 10.1105/tpc.111.084525

16. Gruner L.A. Winter hardiness of blackberries in the Foothill zone of the Caucasus. Bulletin of applied botany, genetics and plant breeding. 1986;106:85-86.

17. Gruner L.A. Blackberry – a valuable plant (Yezhevika – tsennoye rasteniye). Nature Protection of Adygea = Ohrana prirody Adygei. 1987;(3):83-85.

18. Gruner L.A., Knyazev S.D., Kuleshova O.V. Elements of blackberry growing technology in conditions of Orel region. Vestnik of the Russian agricultural science. 1918;(4):31-34. DOI: 10.30850/vrsn/2018/4/31-34

19. Gruner L.A., Kornilov B.B. Priority trends and prospects of blackberry breeding in conditions of Central Russia. Vavilov Journal of Genetics and Breeding. 2020;24(5):489-500). DOI: 10.18699/VJ20.641

20. Gruner L.A. Blackberries (Yezhevika). In: E.N. Sedov, L.A. Gruner (eds.). Pomology. Vol 5. Strawberries, Raspberries, Nut and Rare Crops. Orel: VNIISPK; 2014. p.300-308.

21. Hajizadeh H., Razavi Kh., Mostofi Y., Mousavi A., Cacco G., Zamani Z., Stevanato P. Identification and characterization of genes differentially displayed in Rosa hybrida petals during flower senescence. Scientia Horticulturae. 2011;128:320-324. DOI: 10.1016/j.scienta.2011.01.026

22. Han Y., Wang H., Cheng T., Wang J., Yang W., Pan H., Zhang Q. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis. Scientific Reports. 2017;7:1-14. DOI: 10.1038/srep43382

23. He D, Zhang J., Zhang X., He S., Xie D., Liu Y., Li C., Wang Z., Liu Y. Development of SSR markers in Paeonia based on De Novo transcriptomic assemblies. PLoS ONE. 2020;15(1):e0227794. DOI: 10.1371/journal.pone.0227794

24. Hehl R., Sommer H., Saedler H. Interaction between the Tam1 and Tam2 transposable elements of Antirrhinum majus. Molecular and General Genetics. 1987;207(1):47-53. DOI: 10.1007/bf00331489

25. Hsieh T.-H., Lee J.-t., Yang P.-T., Charng Y.-Y., Chan M.-T. Tomato plants ectopically expressing arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology. 2002;130(2):618-626. DOI: 10.1104/pp.006783

26. Huang X., Yi P., Liu Y., Li Q., Jiang Y., Yi Y., Yan H. RrTTG1 promotes fruit prickle development through an MBW complex in Rosa roxburghii. Frontiers in Plant Science. 2022;13:939270. DOI: 10.3389/fpls.2022.939270

27. Ishiguro K., Taniguchi M., Tanaka Y. Functional analysis of Antirrhinum kelloggii flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. Journal of Plant Research. 2012;125:451-456. DOI: 10.1007/s10265-011-0455-5

28. Jaillon O., Aury J.M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C., Vezzi A., Legeai F., Hugueney P., Dasilva C., Horner D., Mica E., Jublot D., Poulain J., Bruyère C., Billault A., Segurens B., Gouyvenoux M., Ugarte E., Cattonaro F., Anthouard V., Vico V., Del Fabbro C., Alaux M., Di Gaspero G., Dumas V., Felice N., Paillard S., Juman I., Moroldo M., Scalabrin S., Canaguier A., Le Clainche I., Malacrida G., Durand E., Pesole G., Laucou V., Chatelet P., Merdinoglu D., Delledonne M., Pezzotti M., Lecharny A., Scarpelli C., Artiguenave F., Pè M.E., Valle G., Morgante M., Caboche M., Adam-Blondon A.F., Weissenbach J., Quétier F., Wincker P., French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463-467. DOI: 10.1038/nature06148

29. Jin S., Nasim Z., Susila H., Ahn J.H. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Seminars in Cell and Developmental Biology. 2021;109:20-30. DOI: 10.1016/j.semcdb.2020.05.007

30. Kellogg A.A., Branaman T.J., Jones N.M., Little C.Z., Swanson J.-D. Morphological studies of developing Rubus prickles suggest that they are modified glandular trichomes. Botany. 2011;89:217-226. DOI: 10.1139/b11-008

31. Khanbabaeva O.E., Bogdanova V.D., Zarenkova E.G. Studying of flowering and pollination biology of dwarf snapdragon (Antirrhinum majus L.) varieties and lines. Izvestia of Timiryazev Agricultural Academy. 2013;(5):92-100.

32. Khanbabaeva O.E., Mantseva A.E., Mazaeva A.S., Sorokopudov V.N. The use of wild medicinal plants in the landscape construction of the city of Moscow. The Earth. 2019;(2):32-39.

33. Khlestkina E.K., Shumny V.K. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Russian Journal of Genetics. 2016;52(7):676-687. DOI: 10.1134/S102279541607005X

34. Klimenko Z.K., Plugatar Yu.V., Plugatar S.A., Zykova V.K. The main directions of the breeding of garden roses in the southern coast of the Crimea. Vegetable crops of Russia. 2019;3(47):30-34. DOI: 10.18619/2072-9146-2019-3-30-34

35. Kuluev B.R., Gerashchenkov G.A., Rozhnova N.A., Baymiev An.Kh., Vershinina Z.R., Knyazev A.V., Matniyazov R.T., Gumerova G.R., Mikhailova E.V., Nikonorov Yu.M., Chemeris D.A., Baymiev Al.Kh., Chemeris A.V. CRISPR/Cas genome editing of plants. Biomics. 2017;9(3):155-182. DOI: 10.1007/s00299-020-02573-5

36. Lee J., Kim H.-B., Noh Y.-H., Min S.R., Lee H.-S., Jung J., Park K.-H., Kim D.-S., Nam M.H., Kim T.I., Kim S.-J., Kim H.R. Sugar content and expression of sugar metabolism-related gene in strawberry fruits from various cultivars. Journal of Plant Biotechnology. 2018;45(2):90-101. DOI: 10.5010/JPB.2018.45.2.090

37. Li J.Y. Tree peony and herbaceous peony of China. Beijing: China’s Forestry Press; 1999. [in Chinese].

38. Li M., Zhang D., Gao Q., Luo Y., Zhang H., Ma B., Chen C., Whibley A., Zhang Yu., Cao Y., Li Q., Guo H., Li J., Song Y., Zhang Y., Copsey L., Li Y., Li X., Qi M., Wang J., Chen Y., Wang D., Zhao J., Liu G., Wu B., Yu L., Xu C., Li J., Zhao S., Zhang Yi., Hu S., Liang C., Yin Y., Coen E., Xue Y. Genome structure and evolution of Antirrhinum majus L. Nature Plants. 2019;5:174-183. DOI: 10.1038/s41477-018-0349-9

39. Li M.-Y., Jiao Y.-T., Wang Y.-T., Zhang N., Wang B.-B., Liu R., Yin X., Xu Y., Liu G.-T. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture Research. 2020;7:149. DOI: 10.1038/s41438-020-00371-4

40. Li S.-S., Wang L.-S., Shu Q.-Y., Wu J., Chen L.-G., Shao S., Yin D.-D. Fatty acid composition of developing tree peony (Paeonia section Moutan DC.) seeds and transcriptome analysis during seed development. BMC Genomics. 2015a;16:208. DOI: 10.1186/s12864-015-1429-0

41. Li S.-S., Yuan R.-Y., Chen L.-G., Wang L.-S., Hao X.-H., Wang L.-J., Du H. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS. Food Chemistry. 2015b;173:133-140. DOI: 10.1016/j.foodchem.2014.10.017

42. Lifschitz E., Ayre B.G., Eshed Y. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Frontiers in Plant Scence. 2014;5:465. DOI: 10.3389/fpls.2014.00465

43. Linde M., Hattendorf A., Mattiesh L., Debener T. Genetic analysis of rose resistance genes and their localisations in the rose genome. Acta Horticulturae. 2004;651:123-130. DOI: 10.17660/ActaHortic.2004.651.14

44. Magnard J.-L., Roccia A., Caissard J.-C., Vergne P., Sun P., Hecquet R., Dubois A., Oyant L.H.-S., Jullien F., Nicolè F., Raymond O., Huguet S., Baltenweck R., Meyer S., Claudel P., Jeauffre J., Rohmer M., Foucher F., Hugueney P., Bendahmane M., Baudino S. Biosynthesis of monoterpene scent compounds in roses. Science. 2015;349:81-83. DOI: 10.1126/science.aab0696

45. Martin C., Carpenter R., Sommer H., Saedler H., Coen E.S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. The EMBO Journal. 1985;4(7):1625-1630. DOI: 10.1002/j.1460-2075.1985.tb03829.x

46. Mazaeva A.S. Agronomy of the Phlox panicum (Phlox paniculata L.) (Agrotekhnika floksa metelchatogo (Phlox paniculata L.)) Vestnik Landshaftnoy arhitektury = Landscape Architecture Bulletin. 2018;(15):44-46.

47. Medina J., Catala R., Salinas J. The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Science. 2011;180:3-11. DOI: 10.1016/j.plantsci.2010.06.019

48. Medvedeva N.I., Buntsevich L.L., Mokhno V.S. The use of methods in vitro in breeding of orchard and flower-ornamental crops (Ispolzovanie metodov in vitro v selektsii plodovykh i tsvetochno-dekorativnykh kultur). Fruit growing and viticulture of South Russia. 2012;15(3):1-11.

49. Melzer S., Lens F., Gennen J., Vanneste S., Rohde A., Beeckman T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Geneicst. 2008;40(12):1489-1492. DOI: 10.1038/ng.253

50. Mirich M., Gigel M., Skazka M. Culinary Roses. The best varieties for cooking unusual dishes. (Kulinarnye rozy. Luchshiye sorta dlya prigotovleniya neobychnikh blyud) Zdorovyi obraz myshleniya = A healthy way of thinking. 2021;4(17):14-15.

51. Nagar P.K., Sharma M., Pati P.K., Ahuja P.S. Rose: some important finding with special reference to physiology of flowering. Floriculture and Ornamental Biotechnology. 2007;1(2):102-114.

52. Nassour R., Ayash A., Al-Tameemi K. Anthocyanin pigments: structure and biological importance. Journal of Chemical and Pharmaceutical Sciences. 2020;13(4):45-57.

53. Navarro M., Ayax C., Martinez Y., Laur J., Kayal W.E, Marque C., Teulieres C. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnology Journal. 2011;9:50-63. DOI: 10.1111/j.1467-7652.2010.00530.x

54. Olivares F., Loyola R., Olmedo B., Miccono M.A., Aguirre C., Vergara R., Riquelme D., Madrid G., Plantat P., Mora R., Espinoza D., Prieto H. CRISPR/Cas9 targeted editing of genes associated with fungal susceptibility in Vitis vinifera L. cv. Thompson Seedless using geminivirus-derived replicons. Frontiers in Plant Science. 2021;12:791030. DOI: 10.3389/fpls.2021.791030

55. Pankin A.A., Vorobiev V.A., Khavkin E.E. Polymorphism of intron 2 of the FLORICAULA/LEAFY gene in Brassica plants. Russian Journal of Plant Physiology. 2008;55(4):507-512. DOI: 10.1134/s1021443708040122

56. Pino M.T, Skinner J.S, Jeknic Z, Hayes P.M, Soeldner A.H, Thomashow M.F, Chen T.H.H. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell and Environment. 2008;31(4):393-406. DOI: 10.1111/j.1365-3040.2008.01776.x

57. Preston J.C., Hielman L.C. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Frontiers in Plant Science. 2013;4:80. DOI: 10.3389/fpls.2013.00080

58. Putterill J., Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants. Current Opinion in Plant Biology. 2016;33:77-82. DOI: 10.1016/j.pbi.2016.06.008

59. Rakhmangulov R.S. Application of the CRISPR/Cas system for gene editing in ornamental crops. Plant Biotechnology and Breeding. 2022;5(3):33-41. DOI: 10.30901/2658-6266-2022-3-o1

60. Rakhmangulov R.S., Tikhonova N.G. Breeding of ornamental plants in Russia. Plant Biotechnology and Breeding. 2021;4(4):40-54. DOI: 10.30901/2658-6266-2021-4-o4

61. Raymond O., Gouzy J., Just J., Badouin H., Verdenaud M., Lemainque A., Vergne P., Moja S., Choisne N., Pont C., Carrère S., Caissard J.-C., Couloux A., Cottret L., Aury J.-M., Szécsi J., Latrasse D., Madoui M.-A., François L., Fu X., Yang S.-H., Dubois A., Piola F., Larrieu A., Perez M., Labadie K., Perrier L., Govetto B., Labrousse Y., Villand P., Bardoux C., Boltz V., Lopez-Roques C., Heitzler P., Vernoux T., Vandenbussche M., Quesneville H., Boualem A., Bendahmane A., Liu C., Le Bris M., Salse J., Baudino S., Benhamed M., Wincker P., Bendahmane M. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics. 2018;50:772-777. DOI: 10.1038/s41588-018-0110-3

62. Ren C., Liu Y., Guo Y., Duan W., Fan P., Li S., Liang Z., Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Horticulture Research. 2021;8:52. DOI: 10.1038/s41438-021-00489-z

63. Rouet C., O’Neill J., Banks T., Tanino K., Derivry E., Somers D., Lee E.A. Mapping winterhardiness in garden roses. Journal of the American Society for Horticultural Science. 2022;147(4):37. DOI: 10.21273/JASHS05189-22

64. Schwarz-Sommer Z., Davies B., Hudson A. An everlasting pioneer: the story of Antirrhinum research. Nature Reviews Genetics. 2003;4:655-664. DOI: 10.1038/nrg1127

65. Schwinn K. Venail J., Shang Y., Mackay S., Alm V., Butelli E., Oyama R., Bailey P., Davies K., Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. The Plant Cell. 2006;18(4):831-851. DOI: 10.1105/tpc.105.039255

66. Shi Q., Yuan M., Wang S., Luo X., Luo S., Fu Y., Li X., Zhang Y., Li L. PrMYB5 activates anthocyanin biosynthetic PrDFR to promote the distinct pigmentation pattern in the petal of Paeonia rockii. Frontiers in Plant Science. 2022;13:955590. DOI: 10.3389/fpls.2022.955590

67. Shvachko N.A., Semilet T.V., Tikhonova N.G. Trichomes of higher plants: homologous series in hereditary variability and molecular genetic mechanisms. Russian Journal of Genetics. 2020;56(11):1359-1370. DOI: 10.1134/S1022795420110083

68. Shu X., Ding L., Gu B., Zhang H., Guan P., Zhang J. A stress associated protein from Chinese wild Vitis amurensis, VaSAP15, enhances the cold tolerance of transgenic grapes. Scientia Horticulturae. 2021;285:110147. DOI: 10.1016/j.scienta.2021.110147

69. Sommer H., Carpenter R., Harrison B.J., Saedler H. The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alterations upon excision. Molecular Genetics and Genomics. 1985;199:225-231. DOI: 10.1007/BF00330263

70. Stockinger E.J., Gilmour S.J., Thomashow M.F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences. 1997;94:1035-1040. DOI: 10.1073/pnas.94.3.103

71. Sun X.M., Gao H.D., Zhou W.Q., Yang H.G., Zhang M.M., Wang D. A research on the comprehensive evaluation method in Paeonia. Middle-East Journal of Scientific Research. 2011;8(1):216-221.

72. Szymanski D.B., Lloyd A.M., Marks M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in Plant Science. 2000;5(5):214-219. DOI: 10.1016/S1360-1385(00)01597-1

73. Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology. 1999;50:571-599. DOI: 10.1146/annurev.arplant.50.1.571

74. Tian T., Wang S. TRANSPARENT TESTA GLABRA1, a key regulator in plants with multiple roles and multiple function mechanisms. International Journal of Molecular Sciences. 2020;21:4881. DOI: 10.3390/ijms21144881

75. Varkonyi-Gasic E., Wang T., Voogd C., Jeon S., Drummond R.S.M., Gleave A.P., Allan A.C. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal. 2019;17(5):869-880. DOI: 10.1111/pbi.13021

76. Voogd C., Brian L.A., Wang T., Allan A.C., Varkonyi-Gasic E. Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. Journal of Experimental Botany. 2017;68(7):1539-1553. DOI: 10.1093/jxb/erx044

77. Wang C., Li Y., Wang N., Yu Q., Li Y., Gao J., Zhou X., Ma N. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). Journal of Integrative Biology. 2022. DOI: 10.1111/jipb.13421

78. Wang Y., Zhao M., Xu Z., Zhao L., Han X. Cloning and expression analysis of TTG1 gene related to Rosa rugosa trichomes formation. American Journal of Plant Sciences. 2019;10(2):265-275. DOI: 10.4236/ajps.2019.102020

79. Wei L., Mao W., Jia M., Xing S., Ali U., Zhao Y., Chen Y., Cao M., Dai Z., Zhang K., Dou Z., Jia W., Li B. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany. 2018;69(20):4805–4820. DOI: 10.1093/jxb/ery249

80. Wilson F.M., Harrison K., Armitage A.D., Simkin A.J., Harrison R.J. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods. 2019;15:45. DOI: 10.1186/s13007-019-0428-6

81. Wisniewski M., Basset L.M., Norelli J.L., Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta. 2011;233(5):971-983 DOI: 10.1007/s00425-011-1358-3

82. Yu Z.X., Wang L-J., Zao B., Shan Ch.-M., Zhang Y-H., Chen D-F., Chen X-Y. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant. 2015;8(1):98-110. DOI: 10.1093/mp/ssu127

83. Zaikina E.A., Rumyantsev S.D., Sarvarova E.R., Kuluev B.R. Transcription factor genes involved in plant response to abiotic stress factors. Ecological Genetics. 2019;17(3):47-58. DOI: 10.17816/ecogen17347-58

84. Zhang X., Xu Z., Yu X., Zhao L., Zhao M., Han X., Qi S. Identification of two novel R2R3-MYB transcription factors, PsMYB114L and PsMYB12L, related to anthocyanin biosynthesis in Paeonia suffruticosa. International Journal of Molecular Sciences. 2019;20(5):1055. DOI: 10.3390/ijms20051055

85. Zhang Y., Xu S., Ma H., Duan H., Gao S., Zhou X., Cheng Y. The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers. Plant Physiology and Biochemistry. 2021;164:279-288. DOI: 10.1016/j.plaphy.2021.04.034


Review

For citations:


Rakhmangulov R.S., Barabanov I.V., Erastenkova M.V., Ivanov A.A., Kovalenko T.V., Mezhina K.M., Petrosyan I.A., Kharchenko A.A., Shaimardanov D.Yu., Shaimardanova E.Kh., Anisimova I.N., Tikhonova N.G., Ukhatova Yu.V., Khlestkina E.K. The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR). Plant Biotechnology and Breeding. 2022;5(4):65-78. (In Russ.) https://doi.org/10.30901/2658-6266-2022-4-o3

Views: 922


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)