Preview

Plant Biotechnology and Breeding

Advanced search

The study of the sorghum genetic diversity using the mul¬tiplex microsatellite analysis

https://doi.org/10.30901/2658-6266-2019-3-o1

Abstract

This study is focused on evaluation of the genetic structure and diversity of the national sorghum collection. Analyzing the genetic diversity of crop species is of great importance for genetic resources management and food security of any country. Huge genetic diversity of sorghum provides a great opportunity to improve the agronomic characteristics of this crop. The efficiency of microsatellite  analysis has been demonstrated in many studies on the genetic diversity of different races and geographical groups of sorghum plants. Development of multiplex PCR analysis systems based on a set of polymorphic microsatellite loci will facilitate genetic tests on a large number of plant samples, thus making the research on sorghum diversity more efficient and comprehensive. A system of multiplex PCR analysis based on 12 polymorphic microsatellite loci was developed to perform single-stage high-throughput screening of cultivated and wild forms preserved in the sorghum germplasm collection. As a result of the microsatellite analysis of 200 sorghum plants, 229 alleles were detected. The studied loci showed high polymorphism. More than 17 alleles were identified in most loci, their polymorphic index content (PIC) ranging from 0.694 to 0.954. The value of the effective multiplex ratio (EMR) in the developed system was estimated at 0.833. The microsatellite analysis of sorghum accessions resulted in obtaining quantized gene expressions profiles, with a DNA profile for each accession, and revealed significant polymorphism among the plants of different sorghum varieties (races). The developed multiplex PCR system was shown to be efficient for evaluation of the genetic diversity and genetic relationships of sorghum plants from different races. The analysis of the obtained data using three bioinformatic techniques, NJ cluster analysis, PCoA, and the Bayesian model-based clustering, helped to classify the analyzed sorghum accessions into cluster groups according to their morphological and agronomic traits.

About the Authors

Yu. V. Aniskina
All - Russia Research Institute of Agricultural Biotechnology (VNIISB)
Russian Federation
42 Timiryazevskaya St., Moscow 127550


E. V. Malinovskaya
N. I. Vavilov All-Russian Research Institute of Plant Genetic Resources, Kuban Experimental Station of VIR
Russian Federation
2 Tsentralnaya St., Botanica, Krasnodar region, 352183 



V. S. Mitsurova
All - Russia Research Institute of Agricultural Biotechnology (VNIISB)
Russian Federation
42 Timiryazevskaya St., Moscow 127550


N. S. Velishaeva
All - Russia Research Institute of Agricultural Biotechnology (VNIISB)
Russian Federation
42 Timiryazevskaya St., Moscow 127550


O. S. Kolobova
All - Russia Research Institute of Agricultural Biotechnology (VNIISB)
Russian Federation
42 Timiryazevskaya St., Moscow 127550


I. A. Shilov
All - Russia Research Institute of Agricultural Biotechnology (VNIISB)
Russian Federation
42 Timiryazevskaya St., Moscow 127550


References

1. Ali M.L., Rajewski J.F., Baenziger P.S., Gill K.S., Eskridge K.M., Dweikat I. Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding. 2008;21(4): 497-509. DOI: 10.1007/s11032-007-9149-z

2. Aniskina Yu.V., Malinovskaya E.V., Shalaeva T.V., Mitsurova V.S., Rodionova D.A,, Kharchenko P.N. et al. Technology for genetic identification of sorghum varieties and hybrids based on multiplex microsatellite analysis. Russian Journal of Biotechnology. 2018;34(2):54-69. [in Russian] DOI: 10.21519/0234-2758-2018-34-2-54-69

3. Bhattramakki D., Dong J., Chhabra A.K., Hart G.E. An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome. 2000;43(6):988-1002.

4. Billot C., Ramu P., Bouchet S., Chantereau J., Deu M., Gardes L. et al. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One. 2013;8(4):e59714. DOI: 10.1371/journal.pone.0059714

5. Billot C., Rivallan R., Sall M.N., Fonceka D., Deu M., Glaszmann J.C. et al. A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae). Am. J. Bot. 2012;99(6):e245-250. DOI: 10.3732/ajb.1100548

6. Bolshakov A.Z., Bondarenko S.M., Kadyrov S.V., Klepko Yu.N., Kritsky A.N., Fedotov V.A., Usatova O.A. Time to honor sorghum (Vremya chestvovat sorgo). Rostov-on-Don: Rostizdat;, 2008. [in Russian]

7. Brown S.M., Hopkins M.S., Mitchell S.E., Senior M.L., Wang T.Y., Duncan R.R. et al. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 1996;93(1-2):190-198. DOI: 10.1007/BF00225745

8. Chesnokov Yu.V., Artemyeva A.M. Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology. 2015;50(5):571-578. [in Russian] DOI: 10.15389/agrobiology.2015.5.571rus

9. De Wet J.M.J., Huckabay J.P. (1967) The origin of Sorghum bicolor. II. Distribution and domestication. Evolution. 1967;21(4):787-802. DOI: 10.1111/j.1558-5646.1967.tb03434.x

10. Deu M., Hamon P. The genetic organization of sorghum. Agriculture et développement. 1994;Special issue:25-30.

11. Harlan J.R., de Wet J.M.J. A simplified classification of cultivated sorghum. Crop Science. 1972;12(2):172-176. DOI: 10.2135/cropsci1972.0011183X001200020005x

12. Kidwell K.K., Osborn T.C. Simple Plant DNA Isolation Procedures. In: J. Beckman, T.C. Osborn (eds). Plant Genomes. Methods for Genetic and Physical Mapping. Dordrecht: Kluwer Academic Publishers; 1992. p.1-13.

13. Kong L., Dong J., Hart G.E. Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor. Appl. Genet. 2000;101(3):438-448. DOI: 10.1007/s001220051501

14. Li M., Yuyama N., Luo L., Hirata M., Cai H. In silico mapping of 1758 new SSR markers developed from public genomic sequences for Sorghum. Molecular Breeding. 2009;24(1):41-47. DOI: 10.1007/s11032-009-9270-2

15. Maina F., Bouchet S., Marla S.R., Hu Z., Wang J., Mamadou A. et al. Population genomics of sorghum (Sorghum bicolor) across diverse agroclimatic zones of Niger. Genome. 2018;61(4):223-232. DOI: 10.1139/gen-2017-0131

16. Malinovskaya E.V. Intraspecific diversity of Sorghum guineensia Snowd. in connection with the formation of the core collection (Vnutrividovoye raznoobraziye Sorghum guineensia Snowd. v svyazi s formirovaniyem sterzhnevoy kollektsii) [dissertation]. St. Petersburg; 2007. [in Russian]

17. Ng’uni D., Geleta M., Bryngelsson T. Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas. 2011;148(2):52-62. DOI: 10.1111/j.1601-5223.2011.02208.x

18. Ng’uni D., Geleta M., Hofvander P., Fatih M., Bryngelsson T. Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions [Sorghum bicolor (L.) Moench]. Aust. J. Crop Sci. 2012;6(1):56-64.

19. Ouedraogo N., Sanou J., Traore H., Gracen V., Tongoona P., Danquah E.Y. Genetic diversity among sorghum landraces and polymorphism assessment of local improved varieties for stay-green trait. Int. J. Biol. Chem. Sci. 2017;11(1):1-14. DOI: 10.4314/ijbcs.v11i1.1

20. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959.

21. Ramu P., Billot C., Rami J.F., Senthilvel S., Upadhyaya H.D., Ananda Reddy L. et al. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 2013;126(8):2051-2064. DOI: 10.1007/s00122-013-2117-6

22. Sagnard F., Deu M., Dembélé D., Leblois R., Touré L., Diakité M. et al. Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild-weedy-crop complex in a western African region. Theor. Appl. Genet. 2011;123(7):1231-1246. DOI: 10.1007/s00122-011-1662-0

23. Salih S.A., Herslman L., Labuschange M.T., Mohammed A.H. Assessment of genetic diversity of sorghum [Sorghum bicolor (L.) Moench] germplasm in East and Central Africa. World Journal of Biotechnology. 2016;1(3):113-120.

24. Schloss J., Mitchell E., White M., Kukatla R., Bowers E., Paterson H. et al. Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 2002;105(6-7):912-920. DOI: 10.1007/s00122-002-0991-4

25. Shepel N.A. Breeding and seed production of hybrid sorghum (Selektsiya i semenovodstvo gibridnogo sorgo). Rostov-on-Don: Rostov University Publishers; 1985. [in Russian]

26. Snowden J.D. Cultivated races of sorghum. London: Adlard and Sons; 1936.

27. Srinivas G., Satish K., Madhusudhana R., Seetharama N. Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 2009;118(4):703-717. DOI: 10.1007/s00122-008-0931-z

28. Stapf О. Gramineae, sorghum. In: D. Praln (ed.). Flora of Tropical Africa. Vol. 9. London; 1934. p.104-154.

29. Taramino G., Tarchini R., Ferrario S., Lee M., Pe’ M.E. Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor. Appl. Genet. 1997;95(1-2):66-72. DOI: 10.1007/s001220050533

30. Tesfaye K. Genetic diversity study of sorghum (Sorghum bicolor (L.) Moenc) genotypes, Ethiopia. Acta Universitatis Sapientiae, Agriculture and Environment. 2017;9(1):44-54. DOI: 10.1515/ausae-2017-0004

31. Vavilov N.I. Phytogeographic basis of plant breeding (Botaniko-geograficheskiye osnovy selektsii). In: N.I. Vavilov (ed.). The Scientific Bases of Plant Breeding. Vol. 1. Plant Breeding as a Science (Teoreticheskiye osnovy selektsii rasteniy. T. 1. Selektsiya kak nauka). Moscow, Leningrad: Selkhozgiz; 1935. p.17-74. [in Russian]

32. Vavilov N.I., Chester K.S. Phytogeographic basis of plant breeding. In: The Origin, Variation, Immunity and Breeding of Cultivated Plants. Selected writings of N.I. Vavilov, translated from the Russian by K. Starr Chester. Chronica Botanica, Vol. 13. Waltham, Mass.: Chronica Botanica Co.; 1951. p.14-53.

33. Wang Y.H., Bible P., Loganantharaj R. Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Molecular Breeding. 2012;30(1):281-292. DOI: 10.1007/s11032-011-9617-3

34. Wiersema J.H., Dahlberg J. The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon. 2007;56(3):941-946. DOI: 10.2307/25065876

35. Yakushevsky E.S. Species composition of sorghum and its use in breeding (Vidovoy sostav sorgo i ego selektsionnoye ispolzovaniye). Bulletin of Applied Botany, Genetics and Plant Breeding. 1969;41(2):148-178. [in Russian]

36. Zheng L.Y., Guo X.S., He B., Sun L.J., Peng Y., Dong S.S. et al. Genomewide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biology. 2011;12(11):R114. DOI: 10.1186/gb-2011-12-11-r114


Supplementary files

1. Приложение. Генетические паспорта изученных образцов сорго. Appendix: DNA profiles of the investigated sorghum plants
Subject
Type Исследовательские инструменты
Download (847KB)    
Indexing metadata ▾
2. Приложение. Генетические паспорта изученных образцов сорго. Appendix: DNA profiles of the investigated sorghum plants
Subject
Type Исследовательские инструменты
Download (803KB)    
Indexing metadata ▾

Review

For citations:


Aniskina Yu.V., Malinovskaya E.V., Mitsurova V.S., Velishaeva N.S., Kolobova O.S., Shilov I.A. The study of the sorghum genetic diversity using the mul¬tiplex microsatellite analysis. Plant Biotechnology and Breeding. 2019;2(3):20-29. (In Russ.) https://doi.org/10.30901/2658-6266-2019-3-o1

Views: 780


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)