FROM THE EDITOR IN CHIEF
DEVELOPMENT OF MODERN BREEDING METHODS
Knowledge of productivity and genetic control of the rate of ultra-early lines development will facilitate their use in breeding of common wheat Tritium aestivum L. for high adaptive capacity. The research focused on ultra-early lines Rico (k-65588), Rimax (k-67257) (progeny of F3 Rico × ‘Max’, k-57181), Fori 1-8 line series (progeny of F4 ‘Photon’ × Rico) and Rifor 1-13 (progeny of F7-8 Rico × ‘Forlani Roberto’), as well as on the accessions ‘Photon’ (k-55696) and ‘Forlani Roberto’ (k-42641). The varieties ‘Leningradskaya 6’ (k-64900) and ‘Leningradskaya 97’ (k-62935) were used as standards in VIR, and ‘Chelyaba 2’ (k-64379) was used in Сhelyabinsk ARI. The alleles of Vrn and Ppd genes were identified by PCR using the published allele-specific primers. Responses to vernalization (30 days at 3°C) and to a short 12-hour day were determined according to the VIR guidelines. The ultra-earliness of common wheat lines is associated with the presence of dominant alleles Vrn-A1, Vrn-B1, Vrn-D1, Ppd-B1, Ppd-D1, and possibly Eps. The shortest emergence-to-heading period at two experimental locations was noted for Rico (39.9 ± 1.49 days), which is 14.8 ± 1.22 days earlier than the development of region-adapted varieties. The Rico genotype contains Vrn-A1, Vrn-B1, Vrn-D1, Ppd-B1 and Ppd-D1. In the Rimax genotype, different alleles of the Ppd-D1 and Vrn-B1 genes were found, possibly being a result of recombination processes in Rico × ‘Max’ hybrids. Under a short photoperiod (12 hours), the Rico and Rimax genes can interact in a cumulative polymeric mode, which is not the case in long-day environments. Unlike other Rifor lines, Rifor 4 and Rifor 5, as well as ‘Forlani Roberto’, have a recessive vrn-A1a allele. However, Rifor 4 and Rifor 5 do not respond to vernalization, while ‘Forlani Roberto’ is responsive to this factor. The absence of response to vernalization in Rifor 4 and Rifor 5 possessing the recessive vrn-A1a allele is possibly provided by a complex of modifier genes along with the dominant Vrn-D1 gene, which was formed during recombination in F7-8 Rico × ‘Forlani Roberto’ hybrids. Recombinants of spring common wheat, combining ultra-earliness and relatively high ear productivity, have been identified. Grain yield per 1 m2 of new ultra-early lines in some years can reach 90% of that of the ‘Leningradskaya 97’. It is expedient to use ultra-early lines as donors of high-rate development in common wheat breeding, considering genetic peculiarities of the source lines.
GENETIC BASIS OF BIOTECHNOLOGY
Agrobacterium is a natural genetic material delivery system that humans use to produce genetically modified plants (GMO). In nature, GMOs also occur with the participation of agrobacteria. In 2019, the list of known natural GMOs was expanded by an order of magnitude, and facts were found in favor of the expression of agrobacterial genes in natural GMOs. The frequency of this phenomenon for dicotyledon plants has been estimated at 7 percent. Opine synthase genes turned out to be the predominant ones of agrobacterial origin in natural GMOs. They probably perform important functions in natural GMOs. In 2021, an article was published with an updated list of natural GMOs, but the list of genes expressed in natural GMOs has not been updated since 2019. The aim of this work is to update the list of opine synthase genes expressed in natural GMOs. The research methods included bioinformatic search using queries based on the sequences of opine synthase proteins from Agrobacterium rhizogenes, A.tumefaciens and A. vitis, their homologues from Ipomoea and Nicotiana plants, in the TSA database of the National Center for Biotechnology Information (NCBI) using the TBLASTN algorithm with default settings. The study resulted in the addition of another 18 species to the list of natural GMOs with expressed opine synthase genes, 12 of which belong to genera where natural GMOs were not previously described (Albizia, Cenostigma, Averrhoa, Gynostemma, Eurycoma, Gypsophila, Myosoton, Camptotheca, Gustavia, Eschweilera, Cestrum, Jasminum, and Paulownia). An analysis of the diversity of the detected sequences showed that homologues of cucumopine and mikimopine synthase predominate among them. The end products of these genes are optical isomers. In the future, it makes sense to start studying the functions of opine synthases in plants from these genes.
BIOTECHNOLOGY TECHNIQUES IN PLANT BREEDING AND SEED PRODUCTION
Background: Russia is one of the largest peanut importing countries. At the same time, in the south of the country, several zones meet the requirements for peanut cultivation. It is possible to increase the yield of the existing peanut varieties by using modern biotechnology methods, in particular agrobacterial transformation. It is known from the literature data that different peanut genotypes and explants from various sources react differently to in vitro regeneration. Successful regeneration depends on the correct protocol, including both the type of regeneration and the composition of media promoting growth and in vitro induction. Objectives: a technique for obtaining peanut regenerants in in vitro culture. Materials and methods: Eight peanut accessions from the VIR collection of different origin were used in the work. Embryonic explants were grown on Murashige-Skoog medium supplemented with the hormone 2,4-dichlorophenoxyacetic acid (2,4-D). Results and conclusions: As a result of assessing the regenerative ability of peanuts grown on Murashige-Skoog medium with the hormone 2,4-D at a concentration of 2 g/L, differences in the callus formation ability were revealed in different accessions. Those with catalog numbers k-793, k-2054 and k-2055 did not form organogenic calli, while accessions k-698 and k-1987 showed the highest percentage of callus formation from embryonic explants.
Ornamental plants are widespread and popular all over the world. Floriculture industry is of significant economic importance for some countries. Favorable prospects for the development of industrial floriculture were also noted for Russia. This can be facilitated by CRISPR/Cas, a breakthrough method of editing genes responsible for economically valuable traits of plants, which allows bypassing the limitations of the potential intraspecific variability of plants and solving the problem of obtaining non-transgenic modified plants. This article analyzes the current status of ornamental crop breeding using the CRISPR/Cas genetic editing method. The articles were selected from the Scopus database. A search encompassing 50 most common ornamental crops yielded the total of 26 articles on genetic editing using the CRISPR/Cas system, in particular: 8 articles featuring petunia; 1 per each crop on chrysanthemum, kalanchoe, poinsettia and tobacco; 2 per each on dendrobium, gentian, lily and torenia, and 3 per each on phalaenopsis and ipomoea. The found articles were divided into three groups. The first group includes works devoted to studies of mechanisms of genes controlling useful traits, as well as the optimization of the CRISPR/Cas method for a particular crop. The second group unites works aimed at modifying color of flowers and leaves. The third group includes works on increasing the life span of a flower and obtaining double flowers. The review offers the works on the optimization of gene editing in representatives of the orchid family Orchidaceae Juss. Also, it notes the prospects of gene editing by the CRISPR/Cas system, which can accelerate qualitative improvements in breeding and raise it effectiveness, it being especially important in present conditions.
ISSN 2658-6258 (Online)