Anthocyanin content in grains of barley and oat accessions from the VIR collection
https://doi.org/10.30901/2658-6266-2021-3-o4
Abstract
Background. Barley (Hordeum vulgare L.) and oat (Avena sativa L.) are grain crops belonging to one of the main sources of food and forage in the Russian Federation. They contain proteins, various groups of vitamins, fats, carbohydrates, β-glucans, minerals and different bioloactive compounds, including anthocyanins. Recently, much attention has been given to anthocyanins due to their various valuable properties. Therefore, the grain of barley and oat is a potentially promising economic product and a component of functional nutrition. The aim of this work was to estimate the content of anthocyanins in barley and oat accessions with different pigmentation of kernels and lemma. Materials and methods. 32 barley and 11 oat accessions were studied by spectrophotometry. Anthocyanins were extracted from barley and oat kernels with a 1% HCl solution in methanol. Results and discussion. As a result of the study, accessions and varieties with the highest content of anthocyanins were identified: for barley these are k-15904 (China), k-19906 (Mongolia), k-18709 (Japan), k-18723, k-18729 (Canada), k-17725 (Turkey) belonging to var. violaceum; k-29568 (Japan) – var. densoviolaceum; k-8690 (Ethiopia) – var. griseinigrum; k-28205 (Germany) – var. nudidubium; and for oat these are k-15527 (A. ayssinica Hochst. var. braunii Koern., Ethiopia) and k-15245 (A. strigosa Schreb. subsp. brevis var. tephera Mordv. ex Sold. et Rod., Poland). Conclusion. The obtained results demonstrated that the VIR collection includes accessions with potential value for the development of varieties with an increased anthocyanin content, which can be used as functional food products.
Keywords
About the Authors
K. A. LukinaRussian Federation
42, 44, Bolshaya Morskaya Street, St. Petersburg 190000, Russia
O. Y. Shoeva
Russian Federation
10, Acad. Lavrentieva Ave., Novosibirsk 630090, Russia
O. N. Kovaleva
Russian Federation
42, 44, Bolshaya Morskaya Street, St. Petersburg 190000, Russia
I. G. Loskutov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation
42, 44, Bolshaya Morskaya Street, St. Petersburg 190000, Russia
References
1. Abdel-Aal E., Hucl P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chemistry. 1999;76:350-354.
2. Abdel-Aal E.S.M., Young J.C., Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry. 2006;54:4696-4704. DOI: 10.1021/jf0606609
3. Adzhieva V.F., Babak O.G., Shoeva O.Y., Kilchevsky A.V., Khlestkina E.K. Molecular genetic mechanisms of the development of fruit and seed coloration in plants. Russian Journal of Genetics: Applied Research. 2016;6(5):537-552. DOI: 10.1134/S2079059716050026.
4. Bellido G.G., Beta T. Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley. Journal of Agricultural and Food Chemistry. 2009;57(3):1022-1028. DOI: 10.1021/jf802846x
5. Castañeda-Ovando A., de Lourdes Pacheco-Hernández M., Páez-Hernández M.E., Rodríguez J.A., Galán-Vidal C.A. Chemical studies of anthocyanins: A review. Food Chemistry. 2009;113(4):859-871. DOI: 10.1016/j.foodchem.2008.09.001
6. Francavilla A., Joye I.J. Anthocyanins in whole grain cereals and their potential effect on health. Nutrients. 2020;12(10):2922. DOI: 10.3390/nu12102922
7. Grace M.H., Ribnicky D.M., Kuhn P., Poulev A., Logendra S., Yousef G.G., Raskin I., Lila M.A. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine. 2009;16:406-415. DOI: 10.1016/j.phymed.2009.02.018
8. Harlan H.V. Some distinctions in our cultivated barleys with reference to their use in plant breeding. Washington, D.C.: U.S. Department of Agriculture; 1914. 38 p. (Bulletin of the U.S. Department of Agriculture; No. 137). DOI: 10.5962/bhl.title.109258
9. Kang S.Y., Seeram N.P., Nair M.G., Bourquin L.D. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Letters. 2003;194(1):13-19.
10. Karaaslan M., Ozden M., Vardin H., Turkoglu H. Phenolic fortification of yogurt using grape and callus extracts. LWT -Food Science and Technology. 2011;44(4):1065-1072.
11. Khlestkina E.K. The adaptive role of flavonoids: emphasis on cereals. Cereal Research Communications. 2013;41:185-198. DOI: 10.1556/CRC.2013.0004
12. Jurgoński A., Juśkiewicz J., Zduńczyk Z. Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods for Human Nutrition. 2008;63:176-182. DOI: 10.1007/s11130-008-0087-7
13. Kim M.J., Hyun J.N., Kim J.A., Park J.C., Kim M.Y., Kim J.G., Lee S.J., Chun S.C., Chung I.M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry. 2007;55(12):4802-4809. DOI: 10.1021/jf0701943.
14. Lin S., Guo H., Gong J.D.B., Lu M., Lu M.-Y., Wang L., Zhang Q., Qin W., Wu D.-T. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. Journal of Cereal Science. 2018;81:69-75. DOI: 10.1016/j.jcs.2018.04.001.
15. Loskutov I.G., Khlestkina E.K. Wheat, barley, and oat breeding for health benefit components in grain. Plants. 2021;10(1):86. DOI: 10.3390/plants10010086
16. Lundqvist U., Franckowiak J.D. Diversity of barley mutants. In: Von Bothmer R., van Hintum T., Knüpffer H., Sato K. (eds.) Diversity in barley (Hordeum vulgare). Amsterdam: Elsevier; 2003 p.77-96.
17. Nam S.H., Choi S.P., Kang M.Y., Koh H.J., Kozukue N., Friedman M. Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chemistry. 2006;94:613-620.
18. Prior R.L., Wu X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research. 2006;40(10):1014-1028. DOI: 10.1080/10715760600758522
19. Riaz M., Zia-ul-haq M., Saad B. Anthocyanins as natural colours. In: Anthocyanins and human health: Biomolecular and therapeutic aspects. New York: Springer International; 2016 p.47-55.
20. Shoeva O.Y., Strygina K.V., Khlestkina E.K. Genes determining the synthesis of flavonoid and melanin pigments in barley. Vavilov Journal of Genetics and Breeding. 2018;22(3):333-342. DOI: 10.18699/VJ18.369. [in Russian]. DOI 10.18699/VJ18.369.
21. Shvachko N.A., Loskutov I.G., Semilet T.V., Popov V.S., Kovaleva O.N., Konarev A.V. Bioactive components in oat and barley grain as a promising breeding trend for functional food production. Molecules. 2021;26(8);2260. DOI: 10.3390/molecules26082260
22. Siebenhandl S., Grausgruber H., Pellegrini N., Del Rio D., Fogliano V., Pernice R., Berghofer E. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. Journal of Agricultural and Food Chemistry. 2007;55(21):8541-8547. DOI: 10.1021/jf072021j
23. Strygina K.V. Synthesis of flavonoid pigments in grain of representatives of Poaceae: general patterns and exceptions in N.I. Vavilov’s Homologous Series. Russian Journal of Genetics. 2020;56(11):1345-1358. [in Russian]. DOI: 10.1134/S1022795420110095
24. Tikhvinsky S.F. Anthocyanin forms of cultivated plants and their use in breeding (Antotsianovye formy kulturnykh rasteniy i ikh ispolzovaniye v selektsii). Sbornik trudov Kirovskogo SKHI = Proceedings of the Kirov Agricultural Institute. 1991;3-6 [in Russian].
25. Tikhvinsky S.F., Doronin S.V. Anthocyan pigments of plants and their role in adaptive selection of agricultures. Theoretical and applied ecology. 2007;3:15-19. [in Russian].
26. Tsuda T., Horio F., Osawa T. Cyanidin 3-O-β-D-glucoside suppresses nitric oxide production during a zymosan treatment in rats. Journal of Nutritional Science and Vitaminology (Tokyo). 2002;48(4):305-310. DOI: 10.3177/jnsv.48.305
27. Varga M., Berkesi O., Darula Z., May N., Palágyi A. Structural characterization of allomelanin from black oat. Phytochemistry. 2016;130:313-320. DOI: 10.1016/j.phytochem.2016.07.002.
28. Vargach J.I., Loskutov I.G., Mertvishcheva M.E. Antioxidant activity of oat kernel (Avena L.) In: N.I. Vavilov's ideas in the modern world. IV. Vavilov international conference "N.I. Vavilov's ideas in the contemporary world", St. Petersburg, November 20-24, 2017. St. Petersburg;VIR, 2017. p.234-235. [in Russian].
29. Vavilov N.I. Centres of origin of cultivated plants (Tsentry proiskhozhdeniya kulturnykh rasteniy). In.: N.I. Vavilov. Selected works: In 2 volumes. Vol. 1 (N.I. Vavilov Izbranny`e proizvedeniya: V 2 t. T. 1). Leningrad: Nauka; 1967. p.88-202. [in Russian].
30. Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K. Anthocyanins as functional food components. Vavilov Journal of Genetics and Breeding. 2021;25(2):178-189. [in Russian]. DOI: 10.18699/VJ21.022
31. Zhang X-W, Jiang Q-T, Wei Y-M, Liu C. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. PLoS ONE. 2017;12(8):e0183704. DOI: 10.1371/journal.pone.0183704
Review
For citations:
Lukina K.A., Shoeva O.Y., Kovaleva O.N., Loskutov I.G. Anthocyanin content in grains of barley and oat accessions from the VIR collection. Plant Biotechnology and Breeding. 2021;4(3):5-14. (In Russ.) https://doi.org/10.30901/2658-6266-2021-3-o4