Preview

Биотехнология и селекция растений

Расширенный поиск

Генная инженерия как способ получения декоративных растений с изменённой окраской цветков

https://doi.org/10.30901/2658-6266-2020-1-o1

Аннотация

Важным направлением в цветоводстве является получение новых сортов декоративных растений, среди которых наибольшим спросом пользуются растения с необычной окраской цветков. Ранее для их получения успешно применялись традиционные программы по разведению и селекции. Однако в настоящий момент генная инженерия способна предложить альтернативный путь создания новых форм и сортов. Антоцианы, относящиеся к флавоноидам, беталаины и каротиноиды являются основными типами пигментов, которые синтезируются в растении и отвечают за окраску лепестков цветка. Модификация путей биосинтеза пигментов с помощью методов генной инженерии позволяет добиться результатов, которые не могут быть получены при помощи традиционной селекции. В данном обзоре литературы представлены основные достижения применения методов генной инженерии в цветоводстве путём модификации окраски цветков. Существует несколько основных направлений в работе с генами биосинтеза пигментов. Среди них чаще всего используется стратегия по подавлению экспрессии генов для предотвращения синтеза пигмента или, наоборот, для устранения факторов, препятствующих развитию окраски. Нередко используется метод введения в геном растений дополнительных гетерологичных генов, недостающих в пути биосинтеза пигментов. Также для модификации окраски прибегают к геномному редактированию посредством технологии CRISPR/Cas, но данный метод в отношении декоративных растений стал использоваться относительно недавно. Несмотря на быстрое развитие биотехнологий, существуют препятствия для распространения генномодифицированных растений на мировом рынке. Преодоление ряда проблем сможет сделать производство трансгенных декоративных растений экономически более выгодным и привлекательным, чем выведение новых сортов исключительно с помощью традиционных методов селекции.

Об авторе

В. Ю. Санникова
Санкт-Петербургский государственный университет
Россия

Биологический факультет

199034, г. Санкт-Петербург, Университетская наб., д. 7–9



Список литературы

1. Aida R., Kishimoto S., Tanaka Y., Shibata M. Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Science. 2000a;151(1):33-42. DOI: 10.1016/S0168-9452(99)00239-3

2. Aida R., Yoshida K., Kondo T., Kishimoto S., Shibata M. Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Science. 2000b;160(1):49- 56. DOI: 10.1016/S0168-9452(00)00364-2

3. Albert N. W., Davies K. M., Lewis D. H., Zhang H., Montefiori M., Brendolise C., Boase M. R., Ngo H., Jameson P. E., Schwinn K. E. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell. 2014;26(3):962-80. DOI: 10.1105/tpc

4. Boutigny A. L., Dohin N., Pornin D., Rolland M. Overview and detectability of the genetic modifications in ornamental plants. Horticulture Research. 2020;7:11. DOI: 10.1038/s41438-019-0232-5

5. Bradley J., Davies K., Dolores S., Bloor S., Lewis D. The maize Lc regulatory gene up regulates the flavonoid biosynthetic pathway of Petunia. The Plant Journal. 2002;13(3):381-392. DOI: 10.1046/j.1365-313X.1998.00031.x

6. Brand M.H. Ornamental Plant Transformation. Journal of Crop Improvement. 2006;17(1):27-50. DOI: 10.1300/J411v17n01_02

7. Brugliera F., Tao G.Q., Tems U., Kalc G., Mouradova E., Price K., Stevenson K., Nakamura N., Stacey I., Katsumoto Y., Tanaka Y., Mason J. G. Violet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant and Cell Physiology. 2013;54(10):1696-1710. DOI: 10.1093/pcp/pct110

8. Chandler S.F., Brugliera F. Genetic modification in floriculture. Biotechnology Letters. 2011;33(2):207-214. DOI: 10.1007/s10529-010-0424-4

9. Chandler S.F., Sanchez C. Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnology Journal. 2012;10(8):891-903. DOI: 10.1111/j.1467-7652.2012.00693.x

10. Chandler S.F., Tanaka Y. Genetic Modification in Floriculture. Critical Reviews in Plant Sciences. 2007;26(4):169-197. DOI: 10.1080/07352680701429381

11. Courtney-Gutterson N., Napoli C., Lemieux C., Morgan A., Firoozabady E., Robinson K.E. Modification of flower color in florist's chrysanthemum: production of a white-flowering variety through molecular genetics. Biotechnology. 1994;12(3):268-271. DOI: 10.1038/nbt0394-268

12. Delgado-Vargas F., Jimenez A.R., Paredes-Lopez O. Natural pigments: carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition. 2000;40(3):173-289. DOI: 10.1080/10408690091189257

13. Dobres M. Barriers to Genetically Engineered Ornamentals: An Industry Perspective. In: J.A.T. da Silva (ed.). Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, Volume V. London: Global Science Books; 2008. p.1-14.

14. Dunwell J. Transgenic Crops: The Next Generation, or an Example of 2020 Vision. Annals of Botany. 1999;84(3):269-277. DOI: 10.1006/anbo.1999.0934

15. Elomaa P., Honkanen J., Puska R., Seppänen P., Helariutta Y., Mehto M., Kotilainen M., Nevalainen L., Teeri T.H. Agrobacterium-Mediated Transfer of Antisense Chalcone Synthase cDNA to Gerbera hybrida Inhibits Flower Pigmentation. Biotechnology. 1993;11:508–511. DOI: 10.1038/nbt0493-508

16. Katsumoto Y., Fukuchi-Mizutani M., Fukui Y., Brugliera F., Holton T.A., Karan M., Nakamura N., Yonekura-Sakakibara K., Togami J., Pigeaire A., Tao G.Q., Nehra N.S., Lu C.Y., Dyson B.K., Tsuda S., Ashikari T., Kusumi T., Mason J.G., Tanaka Y. Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating. Plant and Cell Physiology. 2007;48(11):1589-1600. DOI: 10.1093/pcp/pcm131

17. Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research. 2017;61(1):1361779. DOI: 10.1080/16546628.2017.1361779

18. Kishi-Kaboshi M., Aida R., Sasaki K. Genome engineering in ornamental plants: Current status and future prospects. Plant Physiology and Biochemistry. 2018;131:47-52. DOI: 10.1016/j.plaphy.2018.03.015

19. Krol A., Lenting P., Veenstra J., Meer I., Koes R., Gerats A., Mol J., Stuitje A. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature. 1998;333:866–869. DOI: 10.1038/333866a0

20. Kuligowska K., Lutken H., Muller R. Towards development of new ornamental plants: status and progress in wide hybridization. Planta. 2016;244(1):1-17. DOI: 10.1007/s00425-016-2493-7

21. Lin-Wang K., Bolitho K., Grafton K., Kortstee A., Karunairetnam S., McGhie T.K., Espley R.V., Hellens R.P., Allan A.C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology. 2010;10:50. DOI: 10.1186/1471-2229-10-50

22. Meyer P., Heidmann I., Forkmann G., Saedler H. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature. 1987;330(6149):677-678. DOI: 10.1038/330677a0

23. Morita Y., Saitoh M., Hoshino A., Nitasaka E., Iida S. Isolation of cDNAs for R2R3-MYB, bHLH and WDR Transcriptional Regulators and Identification of c and ca Mutations Conferring White Flowers in the Japanese Morning Glory. Plant and Cell Physiology. 2006;47(4):457-470. DOI: 10.1093/pcp/pcj012

24. Morita Y., Takagi K., Fukuchi-Mizutani M., Ishiguro K., Tanaka Y., Nitasaka E., Nakayama M., Saito N., Kagami T., Hoshino A., Iida S. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. The Plant Journal. 2014;78(2):294-304. DOI: 10.1111/tpj.12469

25. Nakamura N., Fukuchi-Mizutani M., Miyazaki K., Suzuki K., Tanaka Y. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnology. 2006;23(1):13-17. DOI: 10.5511/plantbiotechnology.23.13

26. Nakatsuka T., Mishiba K., Abe Y., Kubota A., Kakizaki Y., Yamamura S., Nishihara M. Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnology. 2008a;25(1):61-68. DOI: 10.5511/plantbiotechnology.25.61

27. Nakatsuka T., Haruta K.S., Pitaksutheepong C., Abe Y., Kakizaki Y., Yamamoto K., Shimada N., Yamamura S., Nishihara M. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant and Cell Physiology. 2008b;49(12):1818-1829. DOI: 10.1093/pcp/pcn163

28. Nishihara M., Higuchi A., Watanabe A., Tasaki K. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology. 2018;18(1):331. DOI: 10.1186/s12870-018-1539-3

29. Nishihara M., Nakatsuka T. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches. Methods in Molecular Biology. 2010;589:325-347. DOI: 10.1007/978-1-60327-114-1_29

30. Nishihara M., Nakatsuka T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letters. 2011;33(3):433-441. DOI: 10.1007/s10529-010-0461-z

31. Noda N. Recent advances in the research and development of blue flowers. Breeding Science. 2018;68:79-87. DOI: 10.1270/jsbbs.17132

32. Noda N., Yoshioka S., Kishimoto S., Nakayama M., Douzono M., Tanaka Y., Aida R. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances. 2017;3(7):e1602785. DOI: 10.1126/sciadv.1602785.

33. Ohmiya A., Kishimoto S., Aida R., Yoshioka S., Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology. 2016;142(3):1193-1201. DOI: 10.1104/pp.106.087130

34. Polturak G., Grossman N., Vela-Corcia D., Dong Y., Nudel A., Pliner M., Levy M., Rogachev I., Aharoni A. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. PNAS. 2017;114(34):9062-9067. DOI: 10.1073/pnas.1707176114

35. Qi Y., Lou Q., Quan Y., Liu Y., Wang Y. Flower-specific expression of the Phalaenopsis flavonoid 3’, 5’-hydoxylase modifies flower color pigmentation in Petunia and Lilium. Plant Cell, Tissue and Organ Culture. 2013;115:263–273 DOI: 10.1007/s11240-013-0359-2

36. Quattrocchio F., Baudry A., Lepiniec L., Grotewold E. The Regulation of Flavonoid Biosynthesis. In: Grotewold E. (eds) The Science of Flavonoids. New York: Springer; 2006. p. 97-122. DOI: 10.1007/978-0-387-28822-2_4

37. Rodriguez-Amaya D.B. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International. 2019;124:200-205. DOI: 10.1016/j.foodres.2018.05.028

38. Scarano A., Chieppa M., Santino A. Looking at Flavonoid Biodiversity in Horticultural Crops: A Colored Mine with Nutritional Benefits. Plants (Basel). 2018;7(4):98. DOI: 10.3390/plants7040098

39. Schwinn K.E., Boase M.R., Bradley J.M., Lewis D.H., Deroles S.C., Martin C.R., Davies K.M. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions. Frontiers in Plant Science. 2014;5:603. DOI: 10.3389/fpls.2014.00603

40. Schwinn K., Venail J., Shang Y., Mackay S., Alm V., Butelli E., Oyama R., Bailey P., Davies K., Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. The Plant Cell. 2006;18(4):831-851. DOI: 10.1105/tpc.105.039255

41. Shibata M. Importance of genetic transformation in ornamental plant breeding. Plant Biotechnology. 2008;25(1):3-8. DOI: 10.5511/plantbiotechnology.25.3

42. Suzuki S., Nishihara M., Nakatsuka T., Misawa N., Ogiwara I., Yamamura S. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Reports. 2007;26(7):951959. DOI: 10.1007/s00299-006-0302-7

43. Stafford H.A. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science. 1994;101(2):91-98. DOI: 10.1016/0168-9452(94)90244-5

44. Tanaka Y., Brugliera F. Flower color and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(1612):20120432. DOI: 10.1098/rstb.2012.0432

45. Watanabe K., Oda-Yamamizo C., Sage-Ono K., Ohmiya A., Ono M. Alteration of flower color in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research. 2018;27(1):25-38. DOI: 10.1007/s11248-017-0051-0

46. Yamagishi M., Shimoyamada Y., Nakatsuka T., Masuda K. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid lily. Plant and Cell Physiology. 2010;51(3):463-474. DOI: 10.1093/pcp/pcq011


Рецензия

Для цитирования:


Санникова В.Ю. Генная инженерия как способ получения декоративных растений с изменённой окраской цветков. Биотехнология и селекция растений. 2020;3(1):40-45. https://doi.org/10.30901/2658-6266-2020-1-o1

For citation:


Sannikova V.Yu. Genetic engineering as a way to obtain ornamental plants with a changed flower color. Plant Biotechnology and Breeding. 2020;3(1):40-45. (In Russ.) https://doi.org/10.30901/2658-6266-2020-1-o1

Просмотров: 4308


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2658-6266 (Print)
ISSN 2658-6258 (Online)